Physics Colloquium, University of Toronto, 2/7/2013

A Little Big Bang: Strong Interactions in Ultracold Fermi Gases

Martin Zwierlein

Massachusetts Institute of Technology Center for Ultracold Atoms

How cold is ultracold?

Atoms move at:

~ 1 mm/s

 $\sim 10^{6} \text{ m/s}$

Paris in 10 seconds

Ultracold atom experiments

Your Outer living space room

Center of the sun

Supernova explosion

Particles...

...behave as waves

When does wave mechanics matter?

When does wave mechanics matter?

Bosons versus Fermions

Fermions (unsociable):

Half-Integer Spin Pauli blocking → Form Fermi sea No phase transition at low Temperature

Bosons (sociable):

Integer Spin Can share quantum states At low temperatures: Bose-Einstein condensation

ENERGY

Fermions

Bosons

N bosons sharing one and the same macroscopic matter wave

(Artist's conception)

Fermions

N fermions avoiding each other

(Artist's conception)

Condition for quantum degeneracy

Position uncertainty ~ Interparticle spacing

atomic gases

The cooling methods

• Laser Cooling $\rightarrow \sim 1 \,\mathrm{mK}$

$$\bigcirc \longrightarrow \longleftarrow \bigcirc \longleftarrow$$

• Evaporative Cooling \rightarrow ~ 10 nK

Feshbach resonances: Tuning the interactions

Many-Body Quantum Mechanics

simulator"

Interactions, Geometry, Composition etc.

Many-Body Physics with Ultracold Fermi Gases

• Real-time dynamics → Spin Transport

Thermodynamics

Novel Fermi Systems

→ Spin-Orbit Coupled Gas

Large Hadron Collider (LHC)

A Fermi gas collides with a cloud with resonant interactions

Without Interactions

Without Interactions

With resonant interactions

The bouncing gas

First collision

Time (1ms per frame)

Later times

Much later times

Quantum limit of spin diffusion

Mean free path ~ Interparticle spacing d**Diffusion constant:**

X

 $D \sim \text{mean free path} \times \text{average velocity}$

X

$D \sim \frac{\hbar}{}$	Planck's constant	(0.1 mm) ²
$D \sim - = m$	Particle mass	= 1s

→ Quantum Limit of Diffusion

In a hot relativistic fluid (e.g. Quark-Gluon Plasma): $D \sim \frac{\hbar c^2}{2}$

$$mc^2 \rightarrow T$$

Spin Diffusion vs Temperature

Spin current = $-D \cdot$ Spin density gradient **Universal high-T behavior:** 100 **Quantum Limit of** 6.3(3) **Spin Diffusion** mD_s/\hbar 2 10 ħ 8 5.8 m 5 6 7 8 2 3 4 2 3 10 T/T_{F}

High-Temperature Superfluidity

in an Ultracold Fermi Gas

Bosons vs Fermions

Aleksei A. Abrikosov

Spinning a strongly interacting Fermi gas

The rotating bucket experiment with a strongly interacting Fermi gas, a million times thinner than air

Vortex lattices in the BEC-BCS crossover

Establishes *superfluidity* and *phase coherence* in gases of fermionic atom pairs

Classical gas Equation of State (EoS):

 $P = nk_{R}T$

What is the EoS of a strongly interacting Fermi gas?

P(n,T)

Many expts: Thomas, Jin, Salomon, Grimm, Ketterle, Hulet, Mukaiyama, Vale

Relation to equation of state of a neutron star

Property	Atoms	Neutrons
Spin	Pseudospin ½	Spin ½
Interparticle distance n ^{-1/3}	1 µm	1 fm
Density	10 ¹³ cm ⁻³	10 ³⁸ cm ⁻³
Fermi Energy	1 μK = 10 ⁻¹⁰ eV	10 ¹² K = 150 MeV
Scattering length a	freely tunable	-19 fm

Both systems lie in universal regime: $a \Box n^{-1/3}$

small print: neglecting effective range

Measuring the Equation of State

When climbing a mountain, the air gets thinner... Equation of state → density as a function of height The inverse works as well! Density as a function of height → equation of state

Atoms in our trapping potential
air in gravitational potential

Equation of State: Measuring density

Exploiting cylindrical symmetry and careful characterization of trapping potential:

Equation of State: Measuring pressure

How to get T?

...Not impossible, but it's very difficult, so...

Don't! Instead:

Compressibility Equation of State $\kappa(n, P)$

All other thermodynamic quantities follow!

Mark J. H. Ku, Ariel T. Sommer, Lawrence W. Cheuk, Martin W. Zwierlein Science **335**, 563-567 (2012)

Compressibility Equation of State

Science 335, 563-567 (2012)

Compressibility Equation of State

Science 335, 563-567 (2012)

Compressibility Equation of State

Mark J. H. Ku, Ariel T. Sommer, Lawrence W. Cheuk, Martin W. Zwierlein Science **335**, 563-567 (2012)

Mark J. H. Ku, Ariel T. Sommer, Lawrence W. Cheuk, Martin W. Zwierlein Science **335**, 563-567 (2012)

Pressure versus Temperature

Science 335, 563-567 (2012)

Energy, Chemical Potential, Free Energy

Mark J. H. Ku, Ariel T. Sommer, Lawrence W. Cheuk, Martin W. Zwierlein Science **335**, 563-567 (2012)

Entropy

Mark J. H. Ku, Ariel T. Sommer, Lawrence W. Cheuk, Martin W. Zwierlein Science **335**, 563-567 (2012)

Realization of a Feynman Quantum Simulation

Mark Ku, Ariel Sommer, Lawrence Cheuk, MWZ, Science **335**, 563-567 (2012) K. Van Houcke, F. Werner, E. Kozik, N. Prokofev, B. Svistunov, M. Ku, A. Sommer, L. Cheuk, A. Schirotzek, MWZ, Nature Physics **8**, 366 (2012)

Realization of a Feynman Quantum Simulation

Mark Ku, Ariel Sommer, Lawrence Cheuk, MWZ, Science **335**, 563-567 (2012) K. Van Houcke, F. Werner, E. Kozik, N. Prokofev, B. Svistunov, M. Ku, A. Sommer, L. Cheuk, A. Schirotzek, MWZ, Nature Physics **8**, 366 (2012)

Novel Fermi Systems

Towards Stable Dipolar Fermionic Molecules

Cheng-Hsun Wu, Jee Woo Park, Peyman Ahmadi, Sebastian Will, MWZ Phys. Rev. Lett. **109**, 085301 (2012)

Lower-Dimensional Fermi Gases

Ariel Sommer, Lawrence Cheuk, Mark Ku, Waseem Bakr, MWZ Phys. Rev. Lett. **108**, 045302 (2012) Viewpoint in Physics, Jan '12

Spin-Orbit coupled Fermi gases

Lawrence Cheuk, Ariel Sommer, Zoran Hadzibabic, Tarik Yefsah, Waseem Bakr, MWZ, Phys. Rev. Lett. 109, 095302 (2012) Viewpoint in Physics, Aug'12 Beyond isotropic s-wave interactions

Towards Topological Phases of Matter

Conclusion

Universal Spin Transport

Ariel Sommer, Mark Ku, Giacomo Rota, MWZ Nature 472, 201 (2011)

• Universal Thermodynamics Mark Ku, Ariel Sommer, Lawrence Cheuk, MWZ Science 335, 563-567 (2012)

Towards Stable Dipolar Fermionic Molecules Cheng-Hsun Wu, Jee Woo Park, Peyman Ahmadi, Sebastian Will, MWZ Phys. Rev. Lett. 109, 085301 (2012)

Lower-Dimensional Fermi Gases

Ariel Sommer, Lawrence Cheuk, Mark Ku, Waseem Bakr, MWZ Phys. Rev. Lett. **108**, 045302 (2012) Viewpoint in Physics, Jan '12

• Spin-Orbit coupled Fermi gases Lawrence Cheuk, Ariel Sommer, Zoran Hadzibabic, Tarik Yefsah, Waseem Bakr, MWZ, PRL **109**, 095302 (2012)

Towards Understanding and Control of Strongly Interacting Fermi System

Fermions and Bosons

BEC I

Fermi Gases in 3D and 2D Synthetic Gauge Fields

Ariel T. Sommer Mark J.H. Ku Lawrence W. Cheuk Wenjie Ji Dr. Tarik Yefsah Dr. Waseem Bakr Fermi I

LiNaK Mixtures Dipolar Fermions

Cheng-Hsun Wu Jee Woo Park Jenny Schloss Dr. Sebastian Will Fermi II Fermi Gas Microscope Thomas Gersdorf Lawrence Cheuk Melih Okan Matthew Nichols Vinay Ramasesh Dr. Waseem Bakr

Past Members:

A. Schirotzek, PhD 2010 (\rightarrow LBNL) I. Santiago, M.S. 2012 (\rightarrow Oxford U.) Dr. P. Ahmadi, Postdoc (\rightarrow Nufern) C. Clausen (Visiting student, 2008) Visitors:

Dr. Giacomo Roati, LENS, Florence (2010) Dr. Zoran Hadzibabic, Cambridge, UK

Past UROPs:

Sara Campbell (→ JILA/U. Colorado) Caroline Figgatt (→ JQI/U.Maryland) Pangus Ho (MIT '11) Kevin Fischer (MIT '12) Jacob Sharpe (MIT '12) David Reens (MIT '12) Jordan Goldstein (MIT'14)

the David & the Da

