The interior structure and dynamics of Mercury

(my own sober spin based on gravity and rotation observations)

Mathieu Dumberry

University of Alberta, Edmonton, AB, Canada

collaborators: Attilio Rivoldini, Tim Van Hoolst, Marie Yseboodt

Royal Observatory of Belgium, Brussels, Belgium

MESSENGER satellite mission

Launch Date: August 3, 2004 flyby 1: January 14, 2008 flyby 2: October 6, 2008 flyby 3: September 29, 2009 orbital insertion: March 18 2011 currently still in orbit

MESSENGER ORBIT: 12 hr (8 hr) period periapse ~200 km apoapse ~15,000 km

Topography of Mercury from MESSENGER

Zuber et al., Science, 2012

Mercury gravity, geoid from MESSENGER

B > A = equatorial moments of inertia C = polar moment of inertia M, R = mass, radius $J_2 = \frac{C - \frac{1}{2}(A + B)}{MR^2}$ $= (5.03 \pm 0.02) \times 10^{-5}$

$$C_{22} = \frac{B - A}{4MR^2}$$
$$= (0.81 \pm 0.01) \times 10^{-5}$$

Smith et al., Science, 2012

Earth-Mercury comparison: size, interior structure

Image adapted from Stevenson, Nature, 2012

Earth-Mercury comparison: mantle convection

Mercury: stagnant lid convection?

Image from Loddoch et al., EPSL, 2006

High heat flux through CMB

depth, pressure

Low heat flux through CMB

Fe-FeS Liquidus

Chen et al, GRL, 2008

Earth-Mercury comparison: magnetic field Earth surface Mercury surface microTesla

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

Finlay et al, GJI, 2012

Earth-Mercury comparison: magnetosphere

Earth

Mercury

Original artwork by Windows to the Universe staff.

Stanley et al. EPSL, 2005

2) Thermally stratified layer

radial magnetic field

Christensen, Nature, 2006

Vilim et al, JGR, 2011

4) Magnetosphere feedback

Heyner et al, Science, 2011

Structure & Dynamics of Mercury's core

• Which of these models (or combination, or other) can best reproduce observed Mercury field?

• Many models depend on structure of the core

Can we constrain the interior structure?
inner core size?
thermal stratification at CMB?
Fe snow zone? Fe snow in whole core?

Mercury's orbital dynamics: Cassini 1 state rotation axis precession plane i orbital plane $\underbrace{C}_{n} = \frac{\left[J_{2}\left(1-e^{2}\right)^{-3/2}+2C_{22}\left(\frac{7}{2}e-\frac{123}{16}e^{3}\right)\right]\frac{n}{\mu}}{2}$ sin*i* cosi α

n = mean orbital frequency (= $2\pi/87.969$ days⁻¹) μ = precession rate ($2\pi/0.328$ Gyr⁻¹) *i* = orbital inclination (8.6°) *e* = orbital eccentricity (= 0.2056) α = obliquity

Mercury's orbital dynamics: 3:2 spin-orbit resonance

Mercury's orbital period

87.969 days

Mercury's mean rotation period

58.646 days

Ratio between the two

1.5

• librations:

small periodic variations about mean rotation

Adapted from Zuber et al., Space Sci. Rev., 2007

Mercury's longitudinal librations

•If Mercury is a rigid planet, amplitude of libration:

$$\phi = \frac{3}{2} \left(1 - 11e^2 + \frac{959}{48}e^4 \dots \right) \left(\frac{B - A}{C} \right)$$
$$= \frac{3}{2} f(e) \left(\frac{B - A}{C} \right)$$

•If Mercury has fluid core, only the shell librates

$$\phi_m = \frac{3}{2} f(e) \left(\frac{B - A}{C_m} \right)$$

B > A = equatorial moments of inertia C = polar moment of inertia C_m = polar moment of inertia of mantle $C_m < C$

Does Mercury have a fluid core?

$$\frac{C_m}{C} = \frac{MR^2}{C} \frac{B-A}{MR^2} \frac{C_m}{B-A}$$

$\frac{C}{MR^2}$	from obliquity (Cassini 1 state)
$\frac{C_m}{B-A} = \frac{3}{2} \frac{f(e)}{\phi_m}$	from amplitude of libration
$C_{22} = \frac{B - A}{4MR^2} = (0.3)$	$81 \pm 0.01) \times 10^{-5}$ we know from MESSENGER (Smith et al, Science 2012)
if we get $\frac{C_m}{C} < C$	1 Mercury has a fluid core
	Peale, Nature, 1976

Radar observations of Mercury's rotation

Credit: Bill Saxton, NRAO/AUI/NSF

- Margot et al., JGR, 2012
- spin-axis orientation (obliquity)
- rotation rate (libration)

Mercury's longitudinal librations

Does Mercury have a fluid core?

$$\frac{C_m}{C} = \frac{MR^2}{C} \frac{B-A}{MR^2} \frac{C_m}{B-A}$$

$$MoI = \frac{C}{MR^2} = 0.346 \pm 0.014$$

from Radar observation (*Margot et al, JGR, 2012*)

$$\Delta I_m = \frac{B - A}{C_m} = (2.18 \pm 0.09) \times 10^{-4}$$

from Radar observation (*Margot et al, JGR, 2012*)

$$C_{22} = \frac{B - A}{4MR^2} = (0.81 \pm 0.01) \times 10^{-5}$$

from MESSENGER (Smith et al, Science 2012)

$$\frac{C_m}{C} = \frac{4 \cdot C_{22}}{MoI \cdot \Delta I_m} = 0.431 \pm 0.025$$

YES! Mercury has a fluid core (solid inner core?)

Two predictions from rotation observations

Building Interior models

- Must match: $M = 3.302 \times 10^{23} \text{ kg}$, R = 2440 km
- Pressure (P), gravitational acceleration (g), Temperature (T), must obey:

Interior structure of Mercury

$$MoI = \frac{C}{MR^2} = 0.353 \pm 0.017 \qquad \frac{C_m}{C} = \frac{4 \cdot C_{22}}{MoI \cdot \Delta I_m} = 0.452 \pm 0.035$$

Margot et al., Science, 2007

An Iron sulphide layer at base of mantle?

Smith et al., Science, 2012

Image from Stevenson, Nature, 2012

Moments of Inertia of Mercury from radar data

"Old" values (Margot et al, 2007; Smith et al, 2012)

$$MoI = \frac{C}{MR^2} = 0.353 \pm 0.017$$

$$\Delta I_m = \frac{B - A}{C_m} = (2.03 \pm 0.12) \times 10^{-4}$$

$$\frac{C_m}{C} = \frac{4 \cdot C_{22}}{MoI \cdot \Delta I_m} = 0.452 \pm 0.035$$

"New" values (Margot et al, JGR, 2012)

$$MoI = \frac{C}{MR^2} = 0.346 \pm 0.014$$

$$\Delta I_m = \frac{B - A}{C_m} = (2.18 \pm 0.09) \times 10^{-4}$$

$$\frac{C_m}{C} = \frac{4 \cdot C_{22}}{MoI \cdot \Delta I_m} = 0.431 \pm 0.025$$

Interior structure of Mercury

Summary so far...

• Rotation + gravity observations, Give us constraints on: $MoI = \frac{C}{MR^2} = 0.346 \pm 0.014$ $\frac{C_m}{C} = \frac{4 \cdot C_{22}}{MoI \cdot \Delta I_m} = 0.431 \pm 0.025$

• CMB radius: $\approx 2000 \pm 80$ km ; mantle density $\rho_m \approx 3300 \pm 300$ kg/m³

• What is the effect of an inner core?

- What is inner core growth regime? Growth from solidification at ICB? Accumulation of "snow"?
- Can we constrain size of inner core & regime of convection from

 C_m/C and C/MR^2 ?

• Important for:

Dynamo mechanism Thermal history of Mercury nature + concentration of light element in fluid core

Building Interior models

- Must match: $M = 3.302 \times 10^{23} \text{ kg}$, R = 2440 km
- Pressure (P), gravitational acceleration (g), Temperature (T), obey:

$$\frac{\partial P}{\partial r} = -\rho g \qquad \frac{\partial g}{\partial r} = 4\pi G \rho - \frac{2g}{r} \qquad \frac{\partial T}{\partial r} = -\frac{\rho g \gamma}{K_s} T \qquad P = f(\rho, T, \chi)$$
adjustment: sub-adiabatic in top half of fluid core,
linearly decreasing to 5% of dT/dr at CMB
Also: allow T of Liquidus to adjust to local adiabat

- light element = sulfur : data on liquidus, eutectic, thermoelastic properties for Equation of State
- T at ICB = T of liquidus
- choose mantle density, Sulfur fraction at ICB, ICB radius

 $\frac{C_m}{C}, \frac{C}{MP^2}$

• calculate

How does it match constraints from observations?

Interior model: no snow

Interior model: snow zone

ICB = 500km, ρ_m = 3300 kg/m³, Sulfur at ICB = 3%

Interior model: deep snow + stratification

ICB = 500km, ρ_m = 3300 kg/m³, Sulfur at ICB = 5%

Interior model: deep snow

ICB = 500km, ρ_m = 3300 kg/m³, Sulfur at ICB= 10%

Interior model: ICB = 50 km

Constrained Models

- Find models that match: $M = 3.302 \times 10^{23} \text{ kg}$, R = 2440 km
- Also match: $C_m/C = 0.431$, $C/MR^2 = 0.346$

Conclusions

• If sulfur is the dominant light element in Mercury's core, constraints on C_m/C and C/MR^2 suggest that

• convection in Mercury's core more likely involves Fe snow zone perhaps extending to ICB

- thermal stratification only for small inner core
- Mercury's inner core smaller than 1550 km (1420 km if error bars were much smaller)
- implications for Mercury's dynamo?

Most promising dynamo model

Christensen, Nature, 2006

For this to work:

- thick thermal layer
- small inner core
- vigorous deep convection

Consistent with what we find?

Can explain axisymmetry, offset & low field strength of Mercury

Christensen & Wicht, Icarus, 2008

Last slide ...

double-diffusive fingering convection In thermal layer

Manglik et al., EPSL, 2010

How would double-diffusion Convection affect dynamo In a deep snow regime?

Lobate scarps

Estimated decrease in radius \approx 2.4-3.6 km

Estimated decrease from solidification of whole core ≈ 17 km

ICB radius: ≈ 1000-1200 km

Double diffusion convection

Stellmach et al, JFM, 2011

Iron sulfide layer? (as extra)

mantle density (kg/m³)

Sulfur fraction at ICR

0.32	0.33	0.34 Mol	0.35	0.36	0.37	0.32	0.33	0.34 Mol	0.35	0.36	0.37

Libration amplitude (no inner core)

$$\Delta I_m = \frac{B - A}{C_m} = (2.18 \pm 0.09) \times 10^{-4}$$

$$\Delta I_m = \frac{B_m - A_m}{C} = \frac{\rho_m \left(P_f^5 \rho_m - R_f^5 \beta_f \right)}{\rho_m \left(P_f^5 \rho_m - R_f^5 \beta_f \right)}$$

Van Hoolst et al, ESPL, 2012

$$\Delta I_m = \frac{B_m - A_m}{C_m} + \frac{B_f - A_f}{C_m}$$
$$= \frac{B - A}{C_m}$$

Libration amplitude (with inner core)

Libration amplitude (with inner core)

Interior models + Equatorial ellipticity

- For given equatorial ellipticity at
 - Surface: β_m
 - CMB: β_c
- Calculate potential of degree 2 at CMB
- Calculate hydrostatic deformation inside core

$$\Phi_{cmb} = \Phi_m + \Phi_c \qquad \Phi_m = f(\beta_m, \beta_c)$$
$$\Phi_c = k \cdot \Phi_m$$

- Gives us $\beta(r)$ in whole core
- Find ellipticity that matches C₂₂:

$$C_{22} = \frac{B - A}{4MR^2} = (0.81 \pm 0.01) \times 10^{-5}$$

• Calculate
$$\Delta I_m$$
: $\Delta I_m = \frac{B-A}{C_m} - \left[\frac{(B_s - A_s) - (B_s' - A_s')}{C_m}\right]$

Free mantle libration

Effect of inner core on libration

viewed from above rotation axis

from Veasey & Dumberry, Icarus, 2011

Free libration modes

Free libration modes

If inner core > 1000 km, Free "mantle" libration very different from 12 yr

MICG mode: period of approximately 4-10 yr

Effect of inner core on libration

Veasey & Dumberry, Icarus, 2011

- Little change in 88-day forced libration
- Can lead to a change in decadal period libration

External forcing:

- Periodic changes on Mercury's orbit from planets
- Jupiter, orbital period = 11.86 yr
 - Close to free mantle libration (if inner core < 1000 km)
 - Can produce a large libration

Long period forced librations

- Convection naturally produces zonal flows
- Chaotic forcing: time-dependent zonal flows

• Scenario: time-dependent zonal flows in Mercury's core

As a function of frequency

viscous relaxation time = 25 yr

Solution as function of time

Imposed zonal flow at ICB

Mantle response

To get a long-period libration of 35 arcsec :

- Need decadal zonal flow changes of \approx 2000 km/yr
- If B at ICB x 10: need changes of \approx 20 km/yr
Fe-FeS Liquidus

