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Ensemble: 
Extrapolation

Ensemble:
Interpolation

Fit

Fitting Decaying Exponentials
Classic ill-posed 
inverse problem

Given Geiger counter 
measurements from a 

radioactive pile, can we 
recover the identity of 
the elements and/or 

predict future 
radioactivity?  Good fits 
with bad decay rates!

P,   S,     I3532 125

6 Parameter Fit
y(A,γ,t) = A1 e-γ1t+A2 e-γ2t+A3 e-γ3t
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Biologists study which proteins talk to which. Modeling?
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48 Parameter Fit!

Systems Biology: Cell Protein Reactions
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Ensemble of Models
We want to consider not just minimum cost fits, but all 
parameter sets consistent with the available data. New 

level of abstraction: statistical mechanics in model space.

Boltzmann weights exp(-C/T)

O is chemical concentration 
y(ti), or rate constant θn…

Don’t trust predictions that vary
Cost is least-squares fit
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Parameters 
Fluctuate 

over 
Enormous 

Range
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sorted eigenparameter number

• All parameters vary by 
minimum factor of 50, some 
by a million
• Not robust: four or five 
“stiff” linear combinations of 
parameters; 44 sloppy

Parameter (sorted)
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Are predictions 
possible?
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Predictions are 
Possible

Model predicts that the 
left branch isn’t important
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Parameters fluctuate orders of 
magnitude, but still predictive!

Thursday, September 26, 13



Sloppy direction

St
iff

 d
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ct
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n

10-6

-10-6

-10-3 10-3

fits of decaying exponentials

Parameter Indeterminacy and 
Sloppiness

A few ‘stiff’ constrained 
directions allow model to 

remain predictive

Note: Horizontal scale 
shrunk by 1000 times

Aspect ratio = Human hair

48 parameter fits are 
sloppy: Many parameter 
sets give almost equally 

good fits

Cost Contours

“Bare Parameter
Axes”

~5 stiff, ~43 sloppy directions
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Systems Biology
Seventeen models

Enormous Ranges of 
Eigenvalues

(348 is a big number)
Sloppy Range ~ √λ Gutenkunst

(a) eukaryotic cell cycle
(b) Xenopus egg cell cycle
(c) eukaryotic mitosis 
(d) generic circadian rhythm
(e) nicotinic acetylcholine intra-receptor 

dynamics
(f) generic kinase cascade
(g) Xenopus Wnt signaling
(h) Drosophila circadian rhythm
(i) rat growth-factor signaling
(j) Drosophila segment polarity 
(k) Drosophila circadian rhythm
(l) Arabidopsis circadian rhythm
(m)in silico regulatory network
(n) human purine metabolism
(o) Escherichia coli carbon metabolism
(p) budding yeast cell cycle
(q) rat growth-factor signaling

3×
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Sloppy Universality Outside Bio
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Sloppy Systems
• Enormous 
 range  of 
 eigenvalues
• Roughly equal 
 density in log
• Observed in 
 broad range of 
 systems

NOT SLOPPY

From accelerator 
design to insect 

flight, multiparameter 
fits are sloppy
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The Model Manifold

Parameter space
Stiff and sloppy directions
Canyons, Plateaus

Data space
Manifold of model predictions
Parameters as coordinates

Model boundaries θn = ±∞, θm
cause Plateaus

Metric gµν from distance to data

Two exponentials θ1, θ2
fit to three data points y1, y2, y3

yn = exp(-θ1 tn) + exp(-θ2 tn)

θ1

θ2
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Geodesics
“Straight line” in curved 

space
Shortest path between 

points

Easy to find cost 
minimum using polar 
geodesic coordinates

γ1, γ2
Cost contours in geodesic coordinates 

nearly concentric circles! 
Use this for algorithms…

γ1

γ 2  
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The Model Manifold is a 
Hyper-Ribbon

•Hyper-ribbon: object that is 
longer than wide, wider than 
thick, thicker than ...
•Thick directions traversed by 
stiff eigenparameters, thin as 
sloppy directions varied.

Sum of many 
exponentials, fit to 

y(0), y(1)
data  predictions at 
y(1/4), y(1/2), y(3/4) 

Widths along geodesics track 
eigenvalues almost perfectly!
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Edges of the model manifold
Fitting Exponentials
Top: Flat model manifold; 
articulated edges = plateau
Bottom: Stretch to uniform 
aspect ratio (Isabel Kloumann)

θ1

θ2
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Hierarchy of widths and 
curvatures

107

10-5

101

Eigendirection at best fit

Hierarchy of widths

Cross sections: fixing f at 0, ½, 1

Theorem: interpolation good 
with many data points

Geometrical convergence

Multi-decade span of 
widths, curvatures, 

eigenvalues

Widths ~ √λ sloppy eigs

Parameter curvature 
KP = 103 ✕ K 

>> extrinsic curvature 

W3

W4 W
5
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Why is it so thin and flat?

Wj

ε=ΔfN+1

2Δf5P3(t)

Model f(t,θ) analytic:
   f(n)(t)/n! ≤ R-n

Polynomial fit Pm-1(t) 
     to f(t1),…,f(tm)
Interpolation convergence 
   theorem
Δfm+1 = f(t)-Pm-1(t) 
      < (t-t1) (t-t2)…(t-tm) f(m)(ξ)/m!
     ~ (Δt / R)m

More than one data per R

Thursday, September 26, 13



Which Rate Constants are in the Stiffest Eigenvector?

*
*

*

*

*

stiffest **

* *

2nd stiffest

Eigenvector 
components along 

the bare parameters 
reveal which ones 
are most important 

for a given 
eigenvector.

Ras

Raf1

Oncogenes
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 Physics: Sloppiness and Emergence
Ben Machta, Ricky Chachra

Both sloppy at long-wavelengths

Emergence of distilled laws from 
microscopic complexity 

Ising: long bonds
Diffusion: long hops

Irrelevant on 
macroscale
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Kullback-Liebler divergence metric
Sloppy after coarse graining (in 
space for Ising, time for diffusion)
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Generation of Reduced Models
Mark Transtrum (not me)

Can we coarse-grain sloppy 
models? If most parameter 
directions are useless, why not 
remove some?
Transtrum has systematic 
method!
(1) Geodesic along sloppiest 
direction to nearby point on 
manifold boundary
(2) Eigendirection simplifies at 
model boundary to chemically 
reasonable simplified model

Coarse-graining = 
boundaries of model 
manifold.

Sloppiest Eigendirection

Simplified at Boundary
(Unsaturable reaction)
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Generation of Reduced Models
Mark Transtrum (not me)

48 params
29 ODEs

Thursday, September 26, 13



Generation of Reduced Models
Mark Transtrum (not me)

12 params
6 ODEs

Effective ‘renormalized’ params

Reduced model fits all 
experimental data

Thursday, September 26, 13



Sloppy Applications
Several applications emerge

Fits good: 
measured 

bad

A. Fitting data vs. 
measuring parameters 

(Gutenkunst)
B. Finding best 
fits by geodesic 
acceleration 
(Transtrum)

C. Optimal experimental 
design (Casey)

E. Estimating systematic 
errors: DFT and interatomic 
potentials (Jacobsen et al.)

D. Sloppy fitness 
and evolution 
(Gutenkunst)
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A. Are rate constants useful?
Fits vs. measurements

• Easy to Fit (14 expts); Measuring huge job (48 params, 25%)
• One missing parameter measurement = No predictivity
• Sloppy Directions = Enormous Fluctuations in Parameters
• Sloppy Directions often do not impinge on predictivity

Fits good: 
measured 

bad

Monte Carlo (anharmonic)

Missing
one

param

Measured

Fit

eigen params

Best Fit

bare 
params
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B. Finding best fits: Geodesic acceleration

Geodesic Paths nearly circles
Follow local geodesic velocity? 
                      
  Gauss-Newton
  Hits manifold boundary

€ 

δθ µ = −gµν∇νC

Model Graph 
add weight λ of 

parameter 
metric yields  
Levenberg-
Marquardt:

Step size now 
limited by 
curvature

Follow parabola, geodesic acceleration
Cheap to calculate; faster; more success
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B. Finding best fits: Model manifold 
dynamics (Isabel Kloumann)

Dynamics on the model 
manifold: Searching for 
the best fit
• Jeffrey’s prior plus noise
• Big noise concentrates 
on manifold edges
• Note scales: flat
• Top: Levenberg-
Marquardt
• Bottom: Geodesic 
acceleration
• Large points: Initial 
conditions which fail to 
converge to best fit
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C. EGFR Trafficking Model

Receptor activation of 
MAPK pathway and other 
effectors (e.g. Src)

recycling

int
ern

ali
zat

ion

Fergal Casey, Cerione lab
• Active research, Cerione lab: testing hypothesis, experimental design    (Cool1≡β-PIX)
• 41 chemicals, 53 rate constants; only 11 of 41 species can be measured
• Does Cool-1 triple complex sequester Cbl, delay endocytosis in wild type NIH3T3 cells?  
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C. Trafficking: experimental design
Which experiment best reduces prediction uncertainty?

• Amount of triple complex was not well predicted
• V-optimal experimental design: single & multiple measurements
• Total active Cdc42 at 10 min.; Cerione independently concurs
• Experiment indicates significant sequestering in wild type
• Predictivity without decreasing parameter uncertainty
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D. Evolution in Chemotype space
Implications of sloppiness? 

• Culture of identical bacteria, one mutation at a time
• Mutation changes one or two rate constants (no pleiotropy): 
  orthogonal moves in rate constant (chemotype) space
• Cusps in first fitness gain (one for each rate constant, big gap)
• Multiple mutations get stuck on ridge in sloppy landscape

Fitness gain from first successful mutation

Thursday, September 26, 13



E. Bayesian Errors for Atoms
‘Sloppy Model’ Approach to Error Estimation of Interatomic Potentials

Søren Frederiksen, Karsten W. Jacobsen, Kevin Brown, JPS

Atomistic potential
820,000 Mo atoms
(Jacobsen, Schiøtz)

Quantum 
Electronic 

Structure (Si)
90 atoms (Mo)

(Arias)

Interatomic Potentials V(r1,r2,…)
• Fast to compute
• Limit me/M → 0 justified
• Guess functional form
  Pair potential ∑ V(ri-rj) poor
  Bond angle dependence
  Coordination dependence
• Fit to experiment (old)
• Fit to forces from electronic
   structure calculations (new)

17 Parameter Fit
Thursday, September 26, 13



E. Interatomic Potential Error Bars

Best fit is sloppy: 
ensemble of fits 
that aren’t much 

worse than best fit. 
Ensemble in 
Model Space!

T0 set by 
equipartition 

energy = best cost

Error Bars 
from quality of 

best fit 

Ensemble of Acceptable Fits to Data
  Not transferable
  Unknown errors
• 3% elastic constant
• 10% forces
• 100% fcc-bcc, 
dislocation core

Green = DFT, Red = Fits

T0

Thursday, September 26, 13



E. Interatomic Potential Error Bars

Best fit is sloppy: 
ensemble of fits 
that aren’t much 

worse than best fit. 
Ensemble in 
Model Space!

T0 set by 
equipartition 

energy = best cost

Error Bars 
from quality of 

best fit 

Ensemble of Acceptable Fits to Data
  Not transferable
  Unknown errors
• 3% elastic constant
• 10% forces
• 100% fcc-bcc, 
dislocation core

Green = DFT, Red = Fits

T0

Thursday, September 26, 13



Sloppy Molybdenum: Does it Work?
Estimating Systematic Errors

Bayesian error σi gives total error if ratio r = errori/σi distributed 
as a Gaussian:  cumulative distribution P(r)=Erf(r/√2)

Three potentials
• Force errors
• Elastic moduli
• Surfaces
• Structural
• Dislocation core
• 7% < σi < 200% 

Note: tails…
Worst errors 
underestimated 
by ~ factor of 2

“Sloppy model” 
systematic 

error most of 
total

~2 << 200%/7%
Thursday, September 26, 13



Systematic Error Estimates for DFT
GGA-DFT as Multiparameter Fit? 

J. J. Mortensen, K. Kaasbjerg, S. L. Frederiksen, 
J. K. Nørskov, JPS, K. W. Jacobsen, 

(Anja Tuftelund, Vivien Petzold, Thomas Bligaard)

Enhancement factor Fx(s) 
in the exchange energy Ex

Large fluctuations

Actual error / predicted error
Deviation from experiment

well described by ensemble!
Thursday, September 26, 13
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Where is Sloppiness From?
Fitting Polynomials to Data

Fitting Monomials to Data
y = ∑an xn 

Functional Forms Same
Hessian Hij = 1/(i+j+1)
Hilbert matrix: famous 

Orthogonal Polynomials
y = ∑bn Ln(x) 

 Functional Forms Distinct
Eigen Parameters
Hessian Hij = δij 

Sloppiness arises when bare 
parameters skew in eigenbasis Small Determinant!

|H| = ∏ λn
Thursday, September 26, 13



Proposed universal ensemble
Why are they sloppy?

Assumptions:   (Not one experiment per parameter)
i. Model predictions all depend on every parameter, 

symmetrically:  yi (θ1 , θ2 , θ3 ) = yi (θ2 , θ3 , θ1 ) 
ii. Parameters are nearly degenerate:   θι = θ0 + εi

Vandermonde
Matrix

d=N-1

• Implies enormous 
range of eigenvalues
• Implies equal spacing 
of log eigenvalues
• Like universality for 
random matrices

Thursday, September 26, 13



48 Parameter “Fit” to Data

ER
K

*

Time

10’

ER
K

*

Time

10’

+EGF

+NGF

bare

eigen

Cost is Energy

Ensemble of Fits 
Gives Error Bars

Error Bars from Data Uncertainty
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Exploring Parameter Space
Rugged? More like Grand Canyon (Josh)

Glasses: Rugged Landscape
Metastable Local Valleys
Transition State Passes

Optimization Hell: Golf Course
Sloppy Models

Minima: 5 stiff, N-5 sloppy
Search: Flat planes with cliffs

Thursday, September 26, 13



Climate Change
Climate models contain many 

unknown parameters, fit to data

Stainforth et al., Uncertainty 
in predictions of the climate 
response to rising levels of 
greenhouse gases, Nature 
433, 403-406 (2005) 

Yan-Jiun Chen

• General Circulation Model (air, oceans, 
clouds), exploring doubling of CO2

• 21 total parameters
• Initial conditions and (only) 
6 “cloud dynamics” parameters varied
• Heating typically 3.4K, ranged from 
< 2K to > 11K
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Neural Networks
Mark Transtrum

• Neural net “trained” to predict 
Black-Scholes output option 
price OP, given inputs volatility 
V, time t, and strike S
• Each circular “neuron” has 
sigmoidal response signal sj to 
input signals si:
     sj = tanh(Σi wij si)
• Inputs and outputs scaled to [-1,1]
• 101 parameters wij  fit to 1530 
data points
(http://www.scientific-consultants.com/nnbd.html)

       V         t      S      OP        
  0.20    5.0   75.   25.0000
  0.40    5.0   93.     7.2537
  0.40  15.0   79.   21.0225
  0.66  10.0   91.   10.3957

   …

V

t

S

OP

3
20

One

Mark Transtrum
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Curvatures
Intrinsic curvature Rµ

ναβ

• determines geodesic 
   shortest paths
• independent of embedding, 
   parameters
Extrinsic curvature
• also measures bending in
   embedding space 
   (i.e., cylinder)
• independent of parameters
• Shape operator, geodesic 
curvature
Parameter effects 
“curvature”
• Usually much the largest
• Defined in analogy to 
extrinsic curvature (projecting 
out of surface, rather than into)

Shape 
Operator

Geodesic 
Curvature

No intrinsic  
curvature
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Why is it so thin?

2Δf5
P3(t)

Model f(t,θ) analytic:
   f(n)(t)/n! ≤ R-n

Polynomial fit Pm-1(t) 
     to f(t1),…,f(tm)
Interpolation convergence 
   theorem
Δfm+1 = f(t)-Pm-1(t) 
      < (t-t1)…(t-tm) f(m)(ξ)/m!
     ~ (Δt / R)m

More than one data per R

Hyper-ribbon: Cross-section 
constraining m points has 
width Wm+1 ~ Δfm+1 ~ (Δt/R)m
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B. Finding sloppy subsystems
Model reduction? 

• Sloppy model as multiple 
redundant parameters?

• Subsystem = subspace of 
parameters pi with similar 
effects on model behavior

• Similar = same effects on 
residuals rj

• Apply clustering algorithm to 
rows of Jij = ∂rj/∂pi

T
pa

ra
m

et
er

 i

residual j

PC12 differentiation model

Continuum mechanics, 
renormalization group, 

Lyapunov exponents can 
also be viewed as sloppy 

model reduction 
Thursday, September 26, 13
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