The lunar surface: A dusty plasma laboratory

Mihaly Horanyi Department of Physics and LASP, U. of Colorado

Outline:

- 1) Motivation
- 2) Dusty plasma primer
- 3) Dusty plasmas on the surfaces of airless bodies
- 4) Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission.

Where do we find plasmas?

- 99% of the visible matter in the universe is 'plasma'.
- A large fraction of this plasma is 'dusty':

Galaxies, interstellar clouds, star formation regions, planetary disks, comets, our atmosphere, planetary rings, all plasma processing devices, even plasma fusion reactors, etc.

- Plasmas Encyclopaedia Britannica:
- A collection of positive and negative charges, about equal in number or density and forming a neutrally charged distribution of matter.

• Plasma state is called the fourth state of matter and is unique in the way in which it interacts with itself, with electric and magnetic fields, and with its environment.

- Dusty Plasmas
- A collection of positive and negative charges, and macroscopic objects, forming a neutrally charged distribution of matter.

Small particles absorb electron and ions and become charged

• Dusty Plasmas

• A collection of positive and negative charges, and macroscopic objects, forming a neutrally charged distribution of matter.

(_)

 $\left(+ \right)$

Small particles absorb electron and ions and become charged

λ

Types of Dusty Plasmas:

e and dust +

(moon, asteroid surface)

dust ⁺ and dust ⁻

New physics:

Dust is many orders of magnitude heavier than ions and can carry many orders of magnitude larger + or - time dependent charge.

new spatial scales new time scales unusual dynamics new waves & instabilities

Dust charge:

electron and ion fluxes secondary and photoelectrons dust – dust collisions

Dust - acoustic wave

AM

MAY.17 1995

Rao et al., 1990 Barkan et al., 1995 2) Dusty plasma primer

The Charge on a Dust Grain

In typical lab plasmas $I_{sec} = I_{pe} = 0$

Electron thermal speed >> ion thermal speed so the grains charge to a negative potential V_s relative to the plasma, until the condition $I_e = I_i$ is achieved.

а

Dust Charge Measurements

UV charging (I)

Dust dropper UV source

Spectral irradiance curve at 0.5 m for the 1kW Hg-Xe arc lamp.

3) Dusty plasmas on the surfaces

Rooster Tails

Rooster Tails

LUNAR DUST, PLASMA, AND UV ENVIRONMENT

$$kT_e \approx m_p v_{sw}^2 / 2$$
$$\phi \approx -m_p v_{sw}^2 / (2e)$$

Halekas, 2010

APOLLO ERA UNRESOLVED OBSERVATIONS

Gene Cernan sketches from Apollo Command Module

- Eyewitness accounts of "streamers" from Apollo command module
- Too bright to be meteoritic ejecta
- Exosphere and/or high altitude (50 km) dust is one possibility
- Key goal if LADEE is to help resolve this open question

UV CHARGING

LEVITATING DUST

Sickafoose et al., 2002

Topography effects everything.

Dust accumulates in craters.

Grain Radii: 100nm to 1 micron

Dust ponds can form.

"Ponding" on Eros

LRO - LAMP

North Pole

South Pole

Lunar Dust Cloud

- 1) Spherically symmetric continually present ejecta cloud generated by interplanetary dust impacts
- 2) Temporal & spatial variability due to meteor showers on time scales of days
- 3) Density enhancements of small grains over the terminators due to plasma effects, expected to be correlated with solar wind conditions and UV variability on time scales of hours

32

Expected Dust Impact Rates

LDEX Instrument

Velocity [km/s]

Science Channels

Individual Impacts

- CSA impact signal waveforms recorded (50 points, 8 µs spacing)
- Waveforms analyzed and impacts are validated
- The samples shown are for a 1.06 µm radius particle at 1.89 km/s velocity

Testing and Calibration

Integrator Signal

Integrator signal with nominal LDEX settings (100ms integration period) an ion source off/on. Blue and red periods are switching of the ion focusing grid.

Note: The rejection of the ion signal is efficient.

Expected Integrated Signal

Integrated signal allows for the detection of the existence of below-threshold population of dust grains (r < 0.3 μ m)

Quick Look Tools

- Predictive tools for threshold estimates
- Data analysis tools for quick turn-around

Orbit Impact Prediction / Visualization

Telemetry Quick-look

LDEX Measurement Requirements

Single grain detection:

✓ LDEX shall be capable of detecting individual dust particles that have a radius of less than 1 micron or greater.

✓ LDEX shall be capable of measuring the size distribution in at least 5 bins covering the dust particle radius range of 1 to 5 micron.

 \checkmark LDEX shall be capable of detecting all particles with radii > 5 micron.

✓ LDEX shall be capable of detecting more than 1 dust particle impact per second.

Collective signal detection:

✓ LDEX shall be capable of detecting the collective signal of particles with the radius range of 0.1 micron to 1 micron.

✓ LDEX shall be capable of making more than 100 measurements of the collective signal within the six minutes immediately prior to sunrise terminator crossing in the lunar orbit (assuming a 50 km circular orbit).

LDEX

SUMMARY

- Dusty plasma issues are relevant to a number of in situ and remote sensing observations.
- The analysis and interpretation of particles and fields, and dust measurements cannot be done one instrument at a time.
- LADEE will make observations around the Moon.

