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Unusual Modes detected in NbSe(2) in Raman Scattering
on entering the superconducting phase.

Urbana Raman Scattering group (1979-80)

Photon: (�̂i,ωi)

Photon: (�̂0,ω0)

Excitation: (�̂i�̂o,ωi − ωo)



Higgs!

Higgs!

2∆0



Higgs Bosons in Superconductors

1. Basics of Superconductivity:

Ginzburg-Landau

Gauge Invariance in BCS and Phase Modes (Plasmons)

Amplitude Modes or Higgs

2. How does one couple to the Higgs?

3. Emergent particle-hole symmetry of BCS.

4. More Experiments in NbSe2

Higgs in d-wave superconductors

Experiments on Cuprates

5. Questions from a CM Theorist to EP Theorists

Relation to the Standard model of particle physics.



Phenomenological understanding of Superconductivity:

London(s) (1935), Ginzburg-Landau (1950).

Following the Meissner-Ochsenfeld Effect.

Superconductivity is 
a MACROSCOPIC COHERENT QUANTUM STATE in 
which the metallic electrons develop a STIFFNESS.

B=0 inside a Supercond., different from a perfect cond.



Photographie : Giaever exploite l’effet « tunnel », une propriété 

qu’ont les objets « quantiques » comme les électrons de passer 

à travers un « mur » Il fait ainsi passer des électrons d’un métal 

ordinaire vers un supraconducteur, ce qui lui permet de  donner 

une démonstration éclatante de la théorie « BCS ».

La majeure partie des électrons du mercure comme 

pour tous les autres supraconducteurs découverts 

ensuite se condensent donc dans un seul et même 

état. Ils conduisent de manière coopérative le 

courant (comme le banc de poissons de la photo), 

ce qui implique une résistance nulle. Si la théorie 

de Ginzburg-Landau permet déjà d’effectuer 

des prédictions de manière précise, on ne sait 

toujours pas comment, à l’échelle des électrons 

eux-mêmes, les choses se passent. Bardeen, 

Cooper et Schrieffer (BCS) 

proposent en 1956 de mettre 

ces électrons en couples pour 

décrire de manière microscopique 

la supraconductivité. Ces paires que l’on appelle 

paires de Cooper en hommage à leur inventeur 

Léon Cooper « vivent » dans un état coopératif 

isolé des autres en énergie… cette prédiction est 

démontrée expérimentalement par Ivar Giaever en 

1960. La théorie du groupe BCS s’impose.

PAIRES DE COOPER

© IStock Photo

1956



Ginzburg and Landau (1950)
Describe a superconductor by a complex wave-function

Ψ(r) = |Ψ(r)|eiφ(r)

with a Hamiltonian

H =
�
d
d
(r)

�
1

2m |(∇− e
∗
/cA)Ψ|2 + r|Ψ|2 + u|Ψ|4

�

Then current:

j = −
�

2e2

mcA+ e�
m∇φ

�
�Psi|2.

London’s Eqn.,
∇×∇×B = λ−2B; λ−2: (Mass of W)
i.e the eqn. giving stiffness
against magnetic field penetration follows
from stiffness of Ψ.



with a Hamiltonian

H =
�
d
d
(r)

�
1

2m |(∇− e
∗
/cA)Ψ|2 + r|Ψ|2 + u|Ψ|4

�

The Ginzburg Landau Model was used to

calculate various properties of superconductors.

It did not give Higgs particle to condensed

matter theorists.

But it did to Higgs (1964).

And

There is also no Higgs in Superfluid Helium(4).

|Ψ|
φ

V



charge: τ3

Amplitude: τ1

Phase:
τ2

BCS:

H =
�

k Ψ
†
kτ3�kΨk

+
�

k,k�,q V (k,k�,q)Ψ†
k+qτ3ΨkΨ

†
k�−qτ3Ψk�



Local Gauge Invariance:

Continuity Equation

BCS Theory does not satisfy this, yet they got 
right answers for things they calculated !

Need to do one loop calculations (RPA) using 

H−HBCS

Gorkov (1959): From BCS theory to Ginzburg-Landau



Eternal Quest for Knowledge - Lev Gorkov (1961)



(2010)

The artist and the discoverer of the relationship of microscopic theory to the phenomenology. 



Anderson (1959), and some others did such a calculation:
Obtained the “Goldstone mode” for oscillations of phase:

τ2 oscillation : ω ∝ k

But this couples to Longitudinal fluctuations of EM field:
Showed that the oscillation is at the plasmon frequency as 
in the normal metallic state:

“Anderson mechanism”.

ω = ωP =
�

4πne2

m −O(∆2/ωP )

ω−1
P sets also the scale for

the London penetration depth.

Or of the mass of W or the range

of weak interactions.



N Protons +
N electrons

Now move the electrons to one side by δx

+
+
+
+
+
+

-

-
-
-
-
-

-

The electrons will move back and forth at

a frequency ωp =
�

4πe2(N/V )
m

Plasmons:



leading to a ”continuity” equation:

charge: τ3

Amplitude: τ1

Phase:
τ2

Amplitude Mode

H, unlike HBCS is also invariant to



τ1 or amplitude sector with
ν2q ≈ 4∆2 + 1

3v
2
F q

2 + iπ
2

12∆vF q.

Littlewood, CMV (1981): Calculation consistent with
this invariance yields an excitations in the

This does not help at all with the observed sharp mode

How would one couple to it anyway?

It has no charge, no dipole moment,
no magnetic moment, etc.
to which we couple excitations
with external probes.



Higgs

Higgs

2∆0

What are these?



NbSe2 has a charge density wave transition at 33 K.

This is a structural transition which gaps
part of the Fermi-surface.
In the low T phase, altered periodicity gives new optical
phonons
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Gauge-Invariant Theory of the Dynamical Interaction of Charge Density
Waves and Superconductivity
P. B. Littlewood and C. M. Varma

Bell Laboratories, Murray Hill, Nev Jersey 07974
(Received 15 June 1981)

The Iong-wavelength amplitude mode of the charge-density-wave state modulates the
average density of states at the Fermi surface leading to a coupling between it and the
order parameter for superconductivity. This is shown, in a gauge-invariant theory, to
lead to a bound state below twice the BCS gap. Our results are discussed in the context
of recent experiments on 2H-NbSe~.

PACS numbers: 74.20.Fg, 71.45.6m, 72.15.Nj

In the charge-density-wave (CDW) state, there
exist zone-center optic phonon modes, which
transform with the full symmetry of the lattice.
These CDW amplitude modes (CDW-AM) are ac-
companied by an oscillation of the CDW gap,
which leads in general to a variation of the aver-
age density of states at the Fermi surface (see
Fig. 1). Furthermore, if a material in a CDW
state undergoes a superconducting transition, the
excitation of the CDW-AM leads also to a time-
dependent pertur'bation of the superconducting
gap, since the latter depends on the density of
states at the Fermi surface, N(0). In this paper,

we study the effects of this coupling.
We were stimulated to undertake the present

study by Raman-scattering experiments of Soo-
ryakumar and Klein (SK) on 2H-NbSe, .' Below
the transition to the CD% state' at T„=33 K, they
observe the CDW-AM in both A and E symme-
tries near 40 cm '. On further cooling below the
superconductivity transition at T, = 7.2 K, a new
"gap" mode appears, in both symmetries, at fre-
quencies close to the BCS gap, 2b, ~17 cm '. SK
argued that the sharpness of the new lines, as-
well as the transfer of oscillator strength from
the gap modes to the CDW-AM with application of
a magnetic field, indicate a new kind of coupled
excitation of the CDW-AM and superconductivity. '
Static effects of the coupling mechanism be-

tween the CD% and 6 have already been invoked
to understand why under pressure a decrease of
T~ [leading to a larger remaining N(0)] is accom-
panied by an increase of T,. In a study of the dy-
namics, the leading-order coupling of the ampli-
tude u of the CDW-AM to the superconducting gap
ls

The coupling constant 6, can be obtained from
the variation of the BCS gap due to a change in
N(0) by using the BCS prescription. This gives

a, = (a,/1, )[N(0)] 'dN(0)/du,

FIG. 1. A schematic picture of the Fermi surface of
2H-NbSe2 (adapted from H,ef. 1) in the &, = 0 plane, in-
cluding the Bragg plane AB induced by a lattice distor-
tion in the CDW state. The inset shows how the Fermi
surface changes from the normal state {full line) into
the CDW state (dashed line) and with further perturba-
tion of the CDW-AM (dotted line).

where ), is the BCS coupling constant.
We write the total Hamiltonian as
H =H I„+H )+H~, ,

where inH „we consider only the q = 0 CDW-AM,pal

H h=S+Ob b. (4)

H„describes the electronic part which gives rise

1981 The American Physical Society

Oscillation of the CDW induced phonon

oscillates the density of electrons at the FS

and therefore the superconducting condensate.



Coupling of CDW to Superconducitivity

Under pressure the distortion of CDW, < u0 >
and its Td decreases, but Tc goes up.
So, we know dTc/dTd or dTc

d<u0>
.

So, an oscillation u(t) about < u0 >
must tickle the superconducting condensate.

A coupling
H

� = g u(t)Ψ+
k τ1Ψk, must therefore exist.

The τ1 mode or ”Amplitude” mode must
therefore appear as a pole in the self-energy
of the CDW induced phonon

g = V ∂∆/∂u



Raman Scattering couples to such Phonons

So calculate the Self-energy of such phonons
(one loop enough) and study the spectral weight.
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ImZ, (v) =0 v(26„
2 4g 2 1/2

= -g'nN(0), ', v) 260.
The first thing to note is that Z(v) is divergent
for any value of the coupling constant g for v
= 2hp. This means that a pole necessarily ap-
pears in the phonon spectral weight

(20)

S(v) =-m 'ImD(v)

a = 4g'N(0)/x'It v, .
For a «1, we get from D '(v, ) = 0

2 4~2
SVg= 26 1— 2m' (h(u, )'

with spectral weight

(22)

(23)

(24)

We identify this mode with the new "gap" mode
observed in Raman scattering by Sooryakumar
and Klein. ' In Fig. 3, we present the spectral
weight, calculated numerically, for n varying
from 0.1 to 0.5 and with p= 4 86p.
We can get a rough estimate of n from the

measured variations with pressure of T, and T„,
and the estimated amplitude of the lattice distor-
tion accompanying the CDW"; we find a =0.3-
0.5. To obtain the result of SK that (10-15)%of
the CD%-AM weight is transferred to the gap
mode, we need +=0.4.
It is interesting to note that the vertex correc-

tion is necessary to keep the self-energy invari-
ant to the transformation

at a frequency v~ below 2b. It is convenient to de-
fine a dimensionless coupling strength

[Eq. (17)]was derived by Nambu' from a general-
ized Ward identity following from (25).
The transformation (25) is to be contrasted with

the more familiar gauge transformation

+(x)—exp[i p (x)v, ]4 (x) (26)
(and the associated transformation of the electro-
magnetic field and the gradient operator) under
which H„ is also invariant, but the BCS Hamil-
tonian is not. The longitudinal response of a su-
perconductor in the BCS approximation is not
gauge invariant. Vertex corrections to maintain
the gauge invariance in the response give rise to
bound states, ' the so-called Bogoliubov modes,
which go to zero frequency at long wavelength.
However, in a charged superconductor these
modes get pushed to near the plasma frequency
of the metal by Coulomb interactions.
The modes calculated here are massive by con-

trast with a mass ~ 2b, . The Coulomb interac-
tions do not affect Z(v) and our bound state. This
is as it should be since H,-„, induces variations
of the superconducting gap with no associated
variation in the charge density.
In the above calculation we have neglected H~, ~

a =O. l

a =0.3

e(x) - exp[a(x)v, ]e(x) (25)

(and the associated transformation of the gradient
operator) under which H„ is invariant, but the
BCS Hamiltonian H, is not. In fact the vertex I'

a =0.5

(b) +
r g~i g~) g&) I gTi

1.0 2.0 3.0
FIG. 2. (a) The phonon self-energy in lowest order

from the BCS approximation Zo and (b) the full self-
energy Z including the vertex correction I'.

~/2h
FIG. 3. The phonon spectral weight of the CDW-AM

for three different values of the coupling constant ~.
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Points of Agreements with the experiment:
(1) new mode sharper than its parent.

(2)parent gets broader when progeny forms.

Never fully tested:
The total spectral weight as a function of temperature
must be conserved,

Although shift of intensity with magnetic field was 
studied by the Urbana group.

The amplitude mode can be observed only
in rather special situation.
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Just as interesting
NbS2 - Same structure, similar Tc, no CDW.
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Why is this the “Higgs”
Peter Higgs in “The Rise of the standard Model,
Ed. (Hoddeson et al. 1997)

“The existence of the characteristic massive spin-zero 
modes had not been noticed by Anderson or by Englert
and Brout. Indeed the theory of what particle physicists
would call the Higgs mode in a superconductor was not
published until 1981, after it had been detected in the 
Raman spectrum of superconducting NbSe(2)! (Ref. to 
expts. by Klein et al, and to theory by Littlewood and 
cmv).”

Why was the theory not done earlier for a superconductor?



Standard Model of Particle Physics

1. Consistency of theory requires that weak-interactions just as electromagnetic

interactions be locally gauge-invariant theories. So the universe is a condensate

of some field Ψ SU(2)× U(1). Ψ has a Landau-Ginzburg type Lagrangian.

2. Unification gets rid of the problem of the un-observed Goldstone modes -

they become the plasmons - W and Z particles. It also provides the amplitude

or Higgs mode which is a scalar < Ψ > .

3. Ψ Being a (complex) scalar terms of the form

gi|Ψ|φ̄iφi are allowed in the Lagrangian, where φ are fermions. This provides

mass to the fermions mi = gi < Ψ >.

4. Strong interactions are combined in the theory with no problems.

:



Suppose now one calculates dynamics by linear in time
term in the Lagragian

No Higgs! as in superfluid 4
He.

Why was Higgs missed in CMP over the years?

Suppose we try Ginzburg-Landau Lagrangian:



Effective Potential V (|Ψ|,φ) for r < 0

|Ψ|
φ

V

In Equilibrium all values of φ must
have the same energy

Therefore there must exist a collective mode
of zero energy at long wavelengths

This is the content of the so-called
Goldstone Theorem.

charge: τ3

Amplitude: τ1

Phase:
τ2

|Ψ|

φ



Try ‘Lorentz-invariant’ Lagrangian as done by Higgs (1964)

; µ = (it, r)

Essential Physical Point (CMV -2001)

Weak-coupling equations for superconductivity are

mathermatically identical to the Dirac equation,

i.e. thery are particle-hole symmetric, although

the normal metallic state (and the state just below Tc)

is not. Then first order time-derivatives are zero.

This point is being displayed in the ”Higgs”

observations in the cold-atom experiments

(Bloch-et al. 2012).

Higgs Immediately : ΩHiggs =

�
−2r/u



Higgs Bosons in Cuprate Superconductors.

”Higgs” Modes in D-Wave Supeconductors

(with Yafis Barlas)

Superconducting Condensate:
Ψ(r1, r2) = Ψ(r,R)
r = (r1 − r2)
R = (r1 + r2))/2

Ψ(r,R) = Ψ(r)eiφ(R)

Ψ(r) = Ψ(|r|)P2(r̂)



2

sketched in Fig. 2 and corresponds to excited states with
admixtures of additional dx2−y2 , dxy-wave, gxy(x2−y2)-
wave and s + g(x2−y2)2 -wave components to the ground
state, respectively.

We represent the ground state and the oscillations
about it by the order parameter,

Ψ(Q,k) = Ψ0(k) + δΨ(Q,k,ω)eiθ(Q). (1)

Ψ0(k) is the uniform ground state which we assume
to be in the B1g, i.e (k2x − k2y) symmetry with phase
θ = 0. δΨ(Q,k,ω) are the amplitude of the devia-
tions representing the collective modes with total cen-
ter of mass momentum Q and internal momentum k
with phase θ(Q). At long wavelengths, δΨ may be writ-
ten as a separable function of Q and k. The k de-
pendence is expressed in the four one dimensional even
parity irreducible representations (B1g, A1g, B2g, A2g) of
the D4 point group symmetry. For notational simplic-
ity, we will represent δΨ(0,k) as linear combinations of
φi(k) = |φi(k)| exp (iθi); i = 0, 1, 2, 3, respectively. In the
limit Q = 0, the field theory is given by the Lagrangian
(see supplemental material),

L =
3

∑

i=0

|∂tφi|
2 + ai|φi|

2 − bi|φi|
4 (2)

−
∑

i<j

(

cij |φi|
2|φj |

2 +
dij
2
(φ"

iφj − φ"
jφi)

2

)

.

We include only second order time-derivatives; this is
only valid well below the Ginzburg-Landau regime near
Tc, where a first derivative in time representing dissipa-
tion dominates and Higgs mode cannot occur due to lack
of Lorentz invariance7. We have introduced two distinct
set of parameters cij and dij in (2) so that the energy of
the collective modes depends on the relative phase θi be-
tween the assumed ground state representation and the
others. This is required by symmetry and introduces dis-
tinctive features in the spectra of the collective modes as
we see below.

The equations of motion using (2) give the energy of
the collective modes at Q = 0 to be

ωi(θi) = ±
√

(ci0 + di0 sin
2(θi))|Ψ0|2 + ai, (3)

here θi is the relative phase of the i "= 0 order param-
eters with respect to the ground state order parameter
|Ψ0|2 = −a0/2b0. The (k2x − k2y) order parameter as-
sumed for Ψ0 implies a0 < 0 for T < T c

0 = T c (where
T c is the critical temperature). a′is(i "= 0) remain pos-
itive as T approaches T c from below. cij > dij > 0’s
are expected because of the competition between differ-
ent order parameters. ω0 =

√

4b0|Ψ0|2 corresponds to
the simple s-wave Higgs mode of the d-wave supercon-
ductor and appears at 2∆. The energies ωi correspond
to fluctuations of the dk2

x
−k2

y
order parameter in which it

deforms to other point group symmetries as depicted in
Fig. 2.

FIG. 2. Pictorial representation of the additional Higgs or
amplitude modes of the d-wave superconducting order pa-
rameter predicted in this Letter. Each mode can be labeled
by an irreducible representation of the point-group symmetry
of the lattice in which the deformation of the order parame-
ter occurs (see text for details). For the case of dk2

x
−k2

y
order

parameter depicted above these amplitude fluctuations are
different admixtures of dx2

−y2 -wave (”breathing mode”), dxy-
wave (”rotating mode”), gxy(x2

−y2)-wave (”clapping mode”)
and s + g(x2

−y2)2 -wave (”osculating mode”) components to
the ground state, labeled from top to bottom.

The mass ωi of the modes can be estimated from
general considerations and by comparison with s-wave
Higgs mode. In order to compare the energies ωi

with ω0 one can gain insight by using a two-parameter
Landau-Ginzburg energy functional in the parameter
subspace (φ0,φi). The phase diagram in this subspace
allows for three broken symmetry phases a) |φ0|2 =
−a0/(2b0), |φi|2 = 0, for a0 < 0, ai > 0 ; b) |φ0|2 =
0; |φi|2 = −ai/(2bi) for a0 > 0, ai < 0; and a mixed phase
c) |φ0|2 "= 0, |φi|2 "= 0 which only appears for ai < 0 and
a0 < 0. Since we assume that the broken symmetry su-
perconducting state has dk2

x
−k2

y
order, we must require

that |a0| > |ai| for ai < 0 and a0 < 0. In order to avoid
a second order transition to the mixed phase we must

Various Possible Oscillation Modes

Breathing

Clapping

Osculating

Nodding

Calculate ωH = 1√
2
(2∆0).



Fig. 3 |  X’X’ spectra. Purple horizontal line indicates the estimated background (energy-independent) intensity 
which will be first subtracted from the spectra before applying thermal correction (the Bose factor) later.

Here in Fig. 3, some of the spectra (10 K, dark blue, and 145 K, yellow) are a bit  problematic in the sense that they 
do not follow the systematic trend with temperature that  is obeyed by all other spectra. Most  likely the problem is 
related to the quality of self-consistency in  re-adjusting the focusing, since in  the un-normalized data those two 
spectra have the lowest and highest intensity, respectively (Fig. 4).

 
Fig. 4 |  Un-normalized spectra  for XX and X’X’ polarizations. Apparently there is a tolerance range of focusing, 
within  which the data would look regular after normalization. The XX data are safe to discuss at  a very quantitative 
level, but the quality of focusing consistency of X’X’ and X’Y’ (not shown) might not be good enough.

M. Le Tacon, Yuan Li, et al. (2012)



Exptl. Results of A1g Geometry (Le Tacon, Y. Li, et al. (2012))



The breathing mode steals weight from
the broad background and appears
as a sharp Resonance.

The broad background oscillates the
condensate for Cuprates
just as phonons do for ordinary
Superconductors

The broad background is consistent with the
quantum-critical fluctuations hypothesized (1989),
which lead to a marginal-Fermi-Liquid and
which are shown to promote superconductivity (2007)
and tested as such in other experiments.

?



Anything from superconductivity of interest to HEP?

 Since there is a basic theory of metals and superconductors,
 the Higgs is not all that important in CMP.  
 It would have been if Ginzburg-Landau theory was all we had.

  In EPP, it is of great importance. It completes a consistent    
  Phenomenological theory built on about 50 years of expts.
  and probably limits the form of any theory beyond (both in 
  terms of new particles and “microscopic” basis for the 
  phenomenology.

  







A Few Questions in a CM Theorist’s mind
to ask EP Theorists

1. Why is it so difficult for you to see the Higgs?

-1 Higgs per 10
9
proton collisions?

2. Should’nt you just increase the temperature and
see the electron mass disappear with
a phase transition or crossover at T of
order 200 GeV. Should’nt you
see the electron mass flow?

3. You have a condensate U(1)× SU(2) pervading
the universe. Something(s) anaologous
to magnetic field(s) must be zero. What are they?
What are the penetration depths?
What are the coherence lengths?
Are you type I or type II?
Don’t you have vortices or other topogical excitations
of the more complicated field?



Questions Contd.

4. Talking of the above, where are terms
like |∇φ|2, with which we have
the most fun? Josephson Effects, for example.

5. What are the difficulties in constructing
the theory whose low energy form is the
Ginzburg Landau type theory, i.e the Standard Model?

6. Is it possible that the phenomenology is the ”theory”;
i.e. will it become an axiom?
Is it good enough for that -
infra-red stable, ultraviolet stable, etc.?



An Epistemological Question:

The Higgs field is introduced to have a gauge invariant
theory of massive fermions which is renormalizable.

Observation of Higgs seems to imply that our
demand for a consistent theory of Nature
determines what Nature does!



Le Tacon, Yuan Li, Keimer, et al.
(Stuttgart- 2011-2012, Unpublished)

1√
2
(2∆0).

(2∆0).

Peak close to


