

MAX-PLANCK-GESELLSCHAFT

Complex oxides: a new playground for physics and technology

Andy Mackenzie

Max Planck Institute for Chemical Physics of Solids, Dresden, Germany

School of Physics & Astronomy, University of St Andrews, Scotland

University of Toronto, October 2013

Contents

- 1. Introduction: the challenge of the correlated electron problem
- 2. The revolution in oxide physics stimulated by high temperature superconductivity:
 - a. Material refinement of single crystals and thin films
 - b. New order in the vicinity of 'quantum critical points'
 - c. 'Liquid crystal' ground states in oxide metals
- 3. Conclusions and future prospects

A major challenge for 21st century science:

Complex systems, notably the emergence of simplicity from complexity.

Classical: biology, soft condensed matter, telephone networks, financial systems etc.

Quantum: e.g. particle physics, atomic physics and 'hard' condensed matter, notably strongly correlated electron systems.

.. and also for 21st century technology:

Semiconductors – materials with similar lattice parameters display:

Externally tunable conductivity

Metal-insulator transition, ferromagnetism

Oxides – materials with similar lattice parameters display: Externally tunable conductivity Metal-insulator transition, ferromagnetis, mantiferromagnetism ferrimagnetis, superconductivity, superconductor-insulator transitions charge and spin texturing uantum critical points and associated giant response functions.

Why oxides? High temperature superconductivity

J G Bednorz and K A Müller, Z Phys B 64,189 (1986)

Key goal: improve the quality of the materials **Crystal Growth in an Image Furnace** Feed rod Molten zone ~2500 K Crystal !

'Acid test' of metallic purity: Quantum Oscillations

Landau quantised orbital motion of electrons perpendicular to an applied magnetic field

Orbit area in real space is quantised such that flux $\Phi = AH_z = n \Phi_o$

'whereby we recognize a fundamental unit equal to the flux from one of Dirac's hypothetical magnetic poles'

L. Onsager, Phil Mag 1952; also I.M. Lifshitz

In any system of fermions (bare electrons *or* many-body quasiparticles) with a Fermi surface, the density of states will oscillate as the field is changed and Landau levels cross the Fermi surface.

... but there is an important catch: the evil exponential

Impurity scattering wipes out the precious oscillations exponentially:

$$\widetilde{I}_{\text{meas}} = \widetilde{I}_{\text{intrinsic}} \exp\left(-\frac{\pi r_{\text{c}}}{\ell}\right) \qquad r_{\text{c}} = \frac{\hbar k_{\text{F}}}{eB}$$

For a typical metal $k_{\rm F} \sim 0.5$ Å⁻¹.

A standard 'large' laboratory magnetic field ~ 20 T

Very high purity material

Reasonable purity material

$$\ell \sim 1000 \text{ Å}$$
 $\ell \sim 100 \text{ Å}$
 $\frac{\widetilde{I}_{\text{meas}}}{\widetilde{I}_{\text{intrinsic}}} \approx 0.006$ $\frac{\widetilde{I}_{\text{meas}}}{\widetilde{I}_{\text{intrinsic}}} \approx 4 \times 10^{-23}$

Need HUGE magnetic fields or fantastic materials

First past the post: ruthenates

0.067

0.068

 B^{-1} (Tesla⁻¹)

0.069

0.070

Ray, G.G. Lonzarich, Y. Maeno, S. Nishizaki and T. Fujita, Phys. Rev. Lett. **76**, 3786 (1996)

N. Kikugawa, A.W. Rost, C.W. Hicks, A.J. Schofield & APM, J. Phys. Soc. Jpn. **79**, 024704 (2010)

First direct and confirmed observation of quantum oscillations in a high temperature superconductor

N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J. Bonnemaison, R. Liang, D.A. Bonn, W.N. Hardy & L. Taillefer, Nature **447**, 565 (2007)

Other cuprate families join the rush

B. Vignolle, A. Carrington, R.A. Cooper, M.M. J. French, APM, C. Jaudet, D. Vignolles, Cyril Proust & N. E. Hussey, Nature **455**, 952 (2008)

High quality epitaxial perfection is becoming possible

A K Gutakovskii, L I Fedina & A L Aseev, Phys. Stat. Sol. (a) **150**, 127 (1995). D G Schlom, J H Haeni, J. Lettieri, C D Theis, W Tian, J C Jiang & X Q Pan, Mater. Sci. Eng. B **87,** 282 (2001).

.. and the quest for improvement continues apace

Laser fluence control of extended defects in manganite/titanate superlattices

Hwang group (Tokyo / Stanford) & Muller group (Cornell)

Mannhart group (Augsburg) & Muller group (Cornell)

Quantum oscillations observed in an oxide 2DEG

'Delta-doped' SrTiO₃-NbTiO₃ heterostructures

Y. Kozuka, M. Kim, C. Bell, B.G. Kim, Y. Hikata & H.Y. Hwang, Nature **462**, 487 (2009)

.. and now, even the Fractional Quantum Hall Effect

A. Tsukazaki, S. Akasaka, K. Nakahara, Y. Ohno, H. Ohno, D. Maryenko, A. Ohtomo & M. Kawasaki, Nature Materials **9**, 889 (2010).

Nature has more to offer: consider the 'delafossite' PdCoO₂

At quantum Hall densities this would require mobility of > 2.10⁶ cm²V⁻¹s⁻¹! C.W. Hicks, A.S. Gibbs, A.P. Mackenzie, H. Takatsu, Y. Maeno & E.A. Yelland Phys. Rev. Lett. **109**, 116401 (2012)

How can we stimulate entirely new physics in these ultra-pure materials?

Superconductivity near antiferromagnetic quantum critical points

Quantum critical superconductivity in two metallic antiferromagnets

N.D. Mathur, F.M. Grosche, S.R. Julian, I.R. Walker, D.M. Freye, R.K.W. Haselwimmer and G.G. Lonzarich, Nature **394**, 39 (1998)

Sr₃Ru₂O₇: phase formation from a quantum critical soup

Seen in samples with $\ell \sim 3000$ Å

S.A. Grigera, P. Gegenwart, R. A. Borzi, F. Weickert, A. J. Schofield, R.S. Perry, T. Tayama, T. Sakakibara, Y. Maeno, A. G. Green & APM, Science **306**, 1154 (2004) R.A. Borzi, S.A. Grigera, J. Farrell, R.S. Perry, S. Lister, S.L. Lee, D.A. Tennant, Y. Maeno & APM, Science **315**, 214 (2007) J.A.N. Bruin, R.A. Borzi, S.A. Grigera, A.W. Rost, R.S. Perry and A.P. Mackenzie, Phys. Rev. B **87**, 161106 (2013)

'Liquid crystals' of correlated electrons

Real space limit

Momentum space limit

E. Fradkin, S.A. Kivelson, M.J. Lawler, J.P. Eisenstein & APM, Annual Review of Condensed Matter Physics **1**, 153 (2010)

Conclusions

Oxide metals are ideal playgrounds for the study of quantum complexity due to:

a) Rapid advances in material purity.

b) The marriage of experiment and theory common to all correlated electron systems.

c) The appearance in a single class of materials of a unique range of ground states.

d) The increasingly realistic prospect of being able to use these many-body ground states in entirely new classes of electronics technologies.

'Universal' behaviour seen in heavy fermions, oxides, pnictides and organics

When ρ is *T*-linear, $(\tau T)^{-1} \cong k_{\rm B}/\hbar$ in all these systems in spite of the range of microscopic physics and dimensionality.

In the language of electron-phonon scattering $\alpha = 2\pi\lambda$ where λ is the dimensionless coupling constant.