Moving Beyond the Current Limits of Time: Single Ion Optical Atomic Clocks and the Quest for the Ultimate Isolated Quantum System

Alan A. Madej, Pierre Dubé, Maria Tibbo, and John E. Bernard

U of T Physics Colloquium, Nov. 7, 2013
A stable, periodic source: Pure Electromagnetic (E.M.) Radiation oscillates with an extremely regular frequency. Atoms or molecules absorb discrete energies or frequencies when the E.M. radiation matches the system’s natural energy levels.

A way of reading out the number of periods of Time: Using electronic devices to count the cycles of the E.M. radiation allows us to count time intervals. By defining time in terms of the number of periods of E.M. radiation which is stabilized to the atomic standard’s ‘natural’ frequency, we can create an atomic time standard.
Holding Single Ions With Time Varying Fields

Rf Trap: Axial (z) and Radial (r) confinement is provided by a rapidly oscillating quadratic potential created by the electrode configuration. Solution of the equation of motion shows that the ion moves within a time-averaged 3D potential well. $E_{\text{rms}} = 0$ at trap centre.

Secular motion: ion temperature 1.2 MHz

Micromotion: trap \vec{E} fields $\Omega/2\pi \approx 14 \text{ MHz}$

2-D Simulation Of Trapping fields and ion motion (courtesy U. of Washington)
The new NRC single ion trap uses an endcap trap configuration where the ring electrode is replaced by shield electrodes located around the main RF drive electrodes.
A careful design was made using non-magnetic materials (Macor, Ta, Ti, Mo, etc...) compatible with baking and use in UHV. The new design incorporates methods by which almost all systematic shifts in the ion standard can be measured and evaluated.
Single, Laser Cooled Sr\(^+\) Optical Frequency Standard

- Single Sr\(^+\) Ion held in an Endcap Trap of 0.52mm electrode spacing and cooled to 1.8 mK.
- Probing on S-D quadrupole transition (0.4 Hz) using ULE cavity stabilized diode laser.
Overview of Sr⁺ 445-THz Single Ion Experiment
Spectral Scans On New Ion Trap

Observed Zeeman Spectrum of Single Ion in Endcap Trap System

Spectra of the S-D transition with magnetic shielding in the single ion system with the new trap have been obtained. Good resolution of Zeeman spectra were seen and feature sizes of 4 Hz width seen limited by the probe laser system.
The current spectral resolution obtained of 1×10^{-14} is equivalent to resolving the earth moon distance to the size of an E-coli Bacterium!

(courtesy NASA)
• Accuracy Evaluation of The Single Ion
Controlling the Micromotion Limit

By carefully adjusting the level of micromotion by displacing the ion using compensating static DC fields and by adjusting the relative phase shift between the trap electrodes, conditions are achieved where the observed levels of micromotion in the NRC endcap trap can be reduced to the 10^{-18} fractional shift level.

Patch Potentials, AC phase shift, and defects in trap construction all add to the displacement of the ion from the true AC field node of the Trap. This causes driven motion at the Trap Frequency or Micromotion which shifts the ion resonance via Time dilation and Stark Effects.
Combined Time Dilation and Stark Shifts: The Magic Trap Frequency

\[
\frac{\Delta \nu_{\mu}}{\nu_o} = -\frac{\langle E^2(t) \rangle}{2} \left[\left(\frac{e}{m \Omega c} \right)^2 + \frac{\Delta \alpha_0}{h \nu_o} \right]
\]

For \(^{88}\text{Sr}^+\), \(\Delta \nu_{\mu} = \Delta \nu_{\text{Stark}} + \Delta \nu_{\text{TD}} = 0\) if:

\[
\Omega = \frac{e}{mc} \sqrt{-\frac{\hbar \omega_0}{\Delta \alpha_0}} = 2\pi \times 14.39 \text{ MHz}
\]

- \(\Delta \alpha_0\) known with uncertainty of 3.5%
- Cancellation by factor of 28
- \(\frac{\Delta \nu_{\mu}}{\nu_0}\) uncertainty \(\lesssim \frac{2.2 \times 10^{-17}}{28} \lesssim 1 \times 10^{-18}\)
Comparison of Reference Frequency With Different Generation NRC Trap Systems

Reference cavity

Servo to cavity

Detector

Probe laser

AOM

Frequency servo

NRC Endcap Trap

NRC Paul Trap
Comparison of Traps: Tuning to the Magic Frequency

As a confirmation of the strong cancellation of the residual micromotion, the trap Frequency was tuned in the Paul trap showing a dramatic change in offset.

\[
\frac{\Delta v_\mu}{v_o} = -\frac{\langle E^2(t) \rangle}{2} \left[\left(\frac{e}{m\Omega c} \right)^2 + \frac{\Delta \alpha_o}{h v_o} \right]
\]
Summary of Potential Systematic Shifts for Sr\(^+\) Next Generation Trap

<table>
<thead>
<tr>
<th>Source</th>
<th>Shift [Hz]</th>
<th>Uncertainty [Hz]</th>
<th>Fractional Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micromotion ((\Delta v_{\text{Time Dilation}} + \Delta v_{\text{Stark Effect}}))</td>
<td>0</td>
<td>0.0005</td>
<td>1 \times 10^{-18}</td>
</tr>
<tr>
<td>AC Stark Shift from 1092 nm repump</td>
<td>-0.002</td>
<td>0.001</td>
<td>2 \times 10^{-18}</td>
</tr>
<tr>
<td>Blackbody AC Stark Shift</td>
<td>0.250</td>
<td>0.010</td>
<td>2 \times 10^{-17}</td>
</tr>
<tr>
<td>Collisions</td>
<td>0</td>
<td>0.001</td>
<td>2 \times 10^{-18}</td>
</tr>
<tr>
<td>2nd Order Doppler shift (Thermal motion)</td>
<td>-0.0013</td>
<td>0.0005</td>
<td>1 \times 10^{-18}</td>
</tr>
<tr>
<td>Electric Quadrupole Shift of (^{2}\text{D}_{5/2}) level</td>
<td>0</td>
<td>0.00014</td>
<td>< 3 \times 10^{-19}</td>
</tr>
<tr>
<td>AC Stark Shift from Probe Laser</td>
<td>0.000016</td>
<td>0.000009</td>
<td>2 \times 10^{-20}</td>
</tr>
<tr>
<td>Quadratic Zeeman shift (bias B field)</td>
<td>0.00004</td>
<td>0.000001</td>
<td>2 \times 10^{-21}</td>
</tr>
<tr>
<td>Total</td>
<td>0.247</td>
<td>0.010</td>
<td>2.3 \times 10^{-17}</td>
</tr>
</tbody>
</table>

Sr\(^+\) moves beyond the SI second
• Absolute Frequency measurement via Linkage to SI second using a Fiber based Frequency Comb System
Overview of Sr$^+$ 445-THz Single Ion Experiment
Absolute Frequency Measurement of the Sr\(^+\) Transition vs. the SI Second

Measurements of the probe laser stabilized on the centre of the Ion Reference Frequency at 445 THz were obtained using a fiber based optical frequency comb. This was referenced to the NRC ensemble of Rf Time standards including H masers. Correction to International Atomic Time (TAI) was obtained by GPS satellite time transfer.
Results of NRC-UBC comb connection to 445-THz

Measurements of the probe frequency showed a drift of the 445-THz radiation at a rate of 10 mHz/s in agreement with previous long term measurements.

The observed stabilities versus the maser match that of the reference NRC H4 maser.
Summary of Recent Absolute Frequency Measurements of Sr$^+$ Line Centre Relative to SI second

485.5 ± 0.9 Hz

• Precision Measurements and Relativity
Following the Theory of General Relativity, relative Time as measured by Clocks progress slower in a stronger gravitational potential. The new generation of optical clocks will be able to sense the change in local time change in the Earth’s field of 10^{-16} m^{-1}. This will enable sensitive tests of the theory and push the limits of time metrology as “Gravity” becomes a significant player in characterizing the clock’s environment.
The End of Time (in the Laboratory)

If that wasn’t bad enough, effects such as tidal forces, glacial...

Geophysical applicability of atomic clocks: direct continental geoid mapping

Ruxandra Bondarescu, Mihai Bondarescu, György Hetényi, Lapo Boschi, Philippe Jetzer and Jayashree Balakrishna

1 Institute for Theoretical Physics, University of Zürich, Zürich, Switzerland
2 University of Mississippi, Oxford, MS, USA
3 Universitatea de Vest, Timişoara, Romania
4 Swiss Seismological Service, ETH Zürich, Zürich, Switzerland. E-mail: gyorgy.hetenyi@sed.ethz.ch
5 Department of Earth Sciences, Institute of Geophysics, ETH Zürich, Zürich, Switzerland
6 Harris-Stowe State University, St. Louis, MO, USA

Accepted 2012 July 30. Received 2012 July 27; in original form 2012 June 27
Use of Sr\(^+\) Ion Clock as a Test Of Gravity and Physics in Space

- A proposal has been made to ESA to use a space borne atom interferometer and optical atomic clock to search for non-Newtonian Gravity, Relativity tests, and search for Kuiper Belt mass distributions, and upper limit searches for Gravitational Waves of low frequency.

- One proposed system would incorporate a Sr\(^+\) ion trap optical clock and a 674 nm laser as the up down link.

Image Courtesy of P. Wolf (Observatoire de Paris)
Conclusions

• Probing of the clock transition at below 5 Hz Level (1×10^{-14}) Stability of Probe drift vs. Ion averages down to 10^{-16} level. Probing of single ion transition performed for period exceeding 33 hrs. Storage Times now exceeding 7 days.

• Continuous Measurements of Probe frequency achieved for periods exceeding 30-hrs at stability of reference H maser. Absolute frequency relative to the SI second at 2×10^{-15}.

• Improvement using the new NRC ion trap system has lead to a greater quantification of the micromotion induced shifts and accuracies at the 2×10^{-17} have been achieved with this system.

- Interesting Science and Metrology at the limits of Measurement.
Discussion