Entangled Granular Material
Key Facts about Granular Materials

- collections of macroscopic (\(\sim\) mm) particles interacting through contact forces (e.g. friction)

- Thermal energy irrelevant (\(k_BT \sim 10^{-21} \text{ J} \ll PE \sim 10^{-5} \text{ J}\))
 * systems “frozen” in metastable state, unable to move to lower energy state without external help

- forces propagate in linear chains

\[
2F \sin \theta = W \\
\Rightarrow F = \frac{W}{2 \sin \theta}
\]
Ordinary granular materials are easily manipulated.
Geometrically cohesive particles are different

- Why are rodpiles so rigid?
- Is the rigid rodpile qualitatively different from the sandpile?
- What governs how granular materials rearrange?
Rods: Static Packings and Solid Plugs

- **Philipse** *(Langmuir, 1996)*
 - above aspect ratio ~ 35 pile emerges as solid plug
 - mean-field *Random Contact Model* (packing fraction $\propto v_{\text{excl}}^{-1}$)
 - assumes no orientational correlation, constant coordination number

- **Blouwolff and Fraden** *(Europhysics Letters, 2006)*
 - small variation in coordination number $(6 \leq \langle z \rangle \leq 10)$, essentially validates RCM

![Graph showing packing fraction vs. aspect ratio](image-url)
GCGM display solid & granular behavior Desmond & SVF (2006)
GCGM display solid & granular behavior

Desmond & SVF (2006)
GCGM display solid & granular behavior Desmond & SVF (2006)

Stick-slip

Transition

Solid

Smaller Container
Column Collapse of Granular Rods

Melissa Trepanier

DMR #0706353

Research Corporation: A Foundation for the Advancement of Science
Experimental Setup

- $D = 11.43, 15.24$ cm cylinders
- Sand, Acrylic & Teflon Rods
 - $L : 2.5 - 7.5$ cm
 - $w : 0.16 - 0.6$ cm
 - aspect ratio 4-48
- independent of cylinder velocity
- average runoff in 4 directions
Geometric Transition

Low Piles

Tall Piles
\[\tilde{r} = \begin{cases}
\tilde{H}^{1.2 \pm 0.1} & \tilde{H} < 1.1 \pm 0.3 \\
\tilde{H}^{0.6 \pm 0.1} & \tilde{H} > 1.1 \pm 0.3
\end{cases} \]
Conservation of Volume I: Mesas

\[
\pi r_0^2 H_0 \quad = \quad \pi \left(\frac{H_f}{r_0} \right)^3 \left[\frac{1}{3 \tan^2 \theta_c} - \frac{1}{\tan \theta_c H_f} + \left(\frac{r_f}{H_f} \right)^2 \right]
\]

- \(H_f = H_0, \tan \theta_c = \frac{H_f}{r_f} \)

\[
\frac{r_f}{r_0} \quad = \quad \frac{1}{2 \tan \theta_c} \left(\frac{H_f}{r_0} + \sqrt{4 \tan^2 \theta_c - \frac{H_f^2}{3 r_0^2}} \right) \quad \approx \quad \frac{1}{2 \tan \theta_c r_0} H_f
\]
Conservation of Volume II: Cones

"Classic" angle of repose theory

\[\pi r_0^2 H_0 = \frac{1}{3} \pi H_f r_f^2 \implies \frac{r_f}{r_0} \sim (H_0)^{1/3} \]

\[\frac{H_f}{r_f} = \tan \theta_c \]
Conservation of Volume II: Cones

"Classic" angle of repose theory

\[
\pi r_0^2 H_0 = \frac{1}{3} \pi H_f r_f^2 \implies \frac{r_f}{r_0} \sim (H_0)^{1/3}
\]

Internal stable cone

\[
\frac{H_f}{r_0} = \tan \theta_c
\]

\[
\pi r_0^2 H_0 = \frac{1}{3} \pi H_f r_f^2 \implies \pi r_0^2 H_0 = \frac{1}{3} \pi r_0 \tan \theta_c r_f^2
\]

\[
\implies r_f \sim H_0^{1/2}
\]
Long thin rods form stable piles

AR 24: $h = 3r$
Moderately long rods also don’t collapse!

AR 16: $h = 0.35r$

AR 16: $h = 0.35r$

AR 16: $h = r$
Transition from Solid to Flow

- **Granular Behavior**
- **Transition Region**
- **Solid Behavior**

The graph shows the relationship between pile height/particle length (\tilde{H}_p, \tilde{H}_d) and particle aspect ratio (α) with data points indicating the transition from solid to flow behavior.
Linear Increase in Collapse Probability

\[H = (\tilde{H} - \tilde{H}_l) / (\tilde{H}_u - \tilde{H}_l) \]

Collapse Probability

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.2
0.4
0.6
0.8
1

H=(\tilde{H} - \tilde{H}_l) / (\tilde{H}_u - \tilde{H}_l)
Staples
Nick Gravish, SVF, David Hu, Dan Goldman (2012)
Biological geometric cohesion: ant rafts

- Rafts contain \(\sim 10^5 \) ants, essential for colony survival
- Cohere through interlocked limbs (stable even when dead)
Vibration induced melting
Height relaxes as stretched exponential $h(t) \propto \exp[-(t/\tau)^\beta]$

- Large τ: rigid pile not shaking hard
Timescale τ vs. vibration acceleration Γ: $\tau \propto \exp[\Gamma_0/\Gamma]$

- Large Γ_0: pile much more resistant to less vigorous shaking
Optimally Rigid Barb Ratio

\[\Gamma_0 \]

Barb ratio \(l/w \)

\[\max[\Delta] \]
Entanglement Number
Nonlinear decay/growth of packing fraction, entanglement
Entanglement density peaks with Γ_0
Entanglement density of arcs

- no jamming at $\theta_{\text{subtended}} = 0, 2\pi$
- can “easily” find distance between two arcs

$$(x^A_c, y^A_c, \theta_A), (x^B_c, y^B_c, \theta_B)$$

$$D_{AB}^2 \equiv \left((x^A_c + r \cos \theta_A) - (x^B_c + r \cos \theta_B) \right)^2$$
$$+ \left((y^A_c + r \sin \theta_A) - (y^B_c + r \sin \theta_B) \right)^2$$
Entanglement density of arcs

- no jamming at $\theta_{\text{subtended}} = 0, 2\pi$
- can “easily” find distance between two arcs

\[D_{AB}^2 \equiv \left((x_c^A + r \cos \theta_A) - (x_c^B + r \cos \theta_B) \right)^2 \]
\[+ \left((y_c^A + r \sin \theta_A) - (y_c^B + r \sin \theta_B) \right)^2 \]

Lagrangian formulation actually easier. Minimize

\[D^2 = (x_A - x_B)^2 + (y_A - y_B)^2 \]

subject to constraints: $(x_{A/B}, y_{A/B})$ lie on circle A/B
Rheology of Geometrically Cohesive Granular Materials

- \(l = 1.3\text{cm} \)
- \(w = 0.64\text{cm} \)
- \(l/w = 0.5 \)
- \(d = 0.1\text{cm} \)
- \(\phi \approx 0.24 \)
- \(D = 3.1\text{cm} \)
- \(L = 2 - 11\text{cm} \)
Canonical stick-slip behavior
Event details

![Graph showing force vs. elongation with labels for F_{yield} and F_{drop}.]
• Treat all 7543 slip events as independent failures
Longer piles significantly weaker
Weibullian “weakest link” statistics (Ken Kamrin)

- **Basic assumptions**
 - multiple small units δL, if any one fails, sample fails
 - probability of a unit failing is $P_f \propto F^m \delta L$

- **Success probability of N elements:**
 \[S = \prod [1 - \alpha F^m \delta L] \]
 \[
 \ln S = \sum \ln [1 - \alpha F^m \delta L] \approx \sum -\alpha F^m dL \\
 \implies S \approx \exp [-\alpha LF^m]
 \]

- **Probability of failure if force F and length L:**
 \[P_f(F, L) = 1 - e^{-\alpha LF^m} \]
Cumulative Failure distribution function

\[P_f(F, L) = 1 - e^{-\alpha LF^m} \]
Prediction #1 (fixed length): \(P_f(F') = 1 - e^{-\beta F^m} \)
Fixed length failure probability distribution: $m = 1$
Prediction #2: Mean yield force \(\sim L^{-1} \)

- \(< F_Y > = \int_0^\infty \alpha L F e^{-\alpha L F} dF \sim L^{-1}\)
Mean yield force $\sim L^{-1}$
Prediction #3: Collapse all data onto single curve

\[P_f(F, L) = 1 - e^{-\alpha L F^m} \implies \frac{-1}{L} \log \left[1 - \frac{P_f(F, L)}{P_f(L)} \right] \propto F \]
Prediction #3: Collapse all data onto single curve

\[P_f(F, L) = 1 - e^{-\alpha L F^m} \Rightarrow \frac{-1}{L} \log \left[1 - \frac{P_f(F, L)}{P_f(L)} \right] \propto F \]
Conclusions

- Geometrically Cohesive Granular Materials (GCGM) exhibit solid-like and stick-slip *extensional* rheology
- Statistical/thermodynamic models show some success in explaining behavior
- Extensional rheology well-modeled by weakest-link theory that assumes yield probability proportional to applied force
Flow of Particles Through Wedge Hoppers

aperture: 0-50cm
rods: \(d = 0.08 - 0.6 \text{cm} \)
\(L = 0.6 - 8 \text{cm} \)
aspect ratio: 1 - 50

Summer Saraf
Ordinary (round) Hoppers: Exit Mass Distribution Decays Exponentially

- Zuriguel (2005), distributions scale as $\langle s \rangle$ which may diverge as hopper aperture $R \rightarrow R_c \approx 5D$ (D=particle diameter)
- no memory effects
3+ Decades of Power Law

Large events *more* common than expected
Independent of hit number (Aperture = 10\textit{d})

\begin{itemize}
\item \text{\textit{P}}(n)
\item \text{\textit{n}} \quad \text{number of particles to exit before a jam occurs}
\end{itemize}
Random Walk Models

- Exponential decay implies no correlations:
 - 1 particle exits w/probability p
 - n particles: $P(n) = p \cdot p \ldots p \cdot (1 - p) = p^n \cdot (1 - p)$

\[
\log P(n) = \log p^n (1 - p) = \log(1 - p) + n \log p
\]

\[
\exp[\log P(n)] = e^{\log(1-p) + n \log p}
\]

\[
P(n) = e^{\log(1-p)} e^{n \log p} = (1 - p) e^{n \log p}
\]

$p < 1$ and so $\log p < 0$ and $P(N)$ exponentially decays

- generate random numbers until get one $> p$
- number of random numbers is “event size”
- do this many times, make histogram of event size
Simulation: March 2009

Wedge-shaped hopper w/uniform probability

\[
\begin{array}{cccccccc}
\text{p} & \text{p} \\
\end{array}
\]
Wedge-shaped hopper w/ uniform probability

nonuniform probability: cell j has probability p_j

Simulation: March 2009
Wedge-shaped hopper w/uniform probability

nonuniform probability: cell j has probability p_j
“String” orientation

\[p_c \]

\[p_d \]

\[\perp : \text{low exit probability} \]
“String” orientation

\(p_c \): probability of entering the string orientation

\(p_d \): probability of exiting the string orientation

\(\perp \): low exit probability

\(> \): larger exit probability
“String” orientation

\[p_c, p_d \]

\(\perp \): low exit probability
\(> \): larger exit probability
\(\parallel \): largest exit probability

Distribution of exit probabilities \(p(\theta) \). Need to average over string orientations to find \(\langle P(n) \rangle \).
Final Picture

\[P(N) = \int_{p_c}^{p_d} p^N (1 - p) \, dp \]

\[= \left[\frac{p^{N+1}}{N+1} - \frac{p^{N+2}}{N+2} \right]_{p_c}^{p_d} \]

\[\approx \frac{p_d^{N+1}}{N+1} \approx \frac{\exp[N \ln p_d]}{1+N} \]

As long as \(p_d < 1 \), exponential decay.

As soon as \(p_d = 1 \):

\[\frac{1}{N+1} - \frac{1}{N+2} \approx \frac{1}{N^2} \]
Transition to Power Law

Probability Distribution $P(N)$

- $p_+ = 0.9$
- $p_+ = 0.975$
- $p_+ = 0.995$
- $p_+ = 1.0$

Exit mass N
Success!
Conclusions II

- Exit-mass probability distribution in wedge hoppers shows broad power-law tail.
- Model that assumes characteristic length-scale (strings) with orientation dependent exit probability.
 * Exponential or power-law tail depending on aperture geometry.
- Model and experiment agree over many decades.