Entangled Granular Material

[^0]
Key Facts about Granular Materials

- collections of macroscopic ($\sim \mathrm{mm}$) particles interacting through contact forces (e.g. friction)
- Thermal energy irrelevant $\left(k_{B} T \sim 10^{-21} \mathrm{~J} \ll P E \sim 10^{-5} \mathrm{~J}\right)$
* systems "frozen" in metastable state, unable to move to lower energy state without external help
- forces propagate in linear chains

$2 F \sin \theta=W$
$\Longrightarrow F=\frac{W}{2 \sin \theta}$

Ordinary granular materials are easily manipulated

Geometrically cohesive particles are different

- Why are rodpiles so rigid?
- Is the rigid rodpile qualitatively different from the sandpile?
- What governs how granular materials rearrange?

Rods: Static Packings and Solid Plugs

- Philipse (Langmuir, 1996)
* above aspect ratio ~ 35 pile emerges as solid plug
* mean-field Random Contact Model (packing fraction $\propto v_{\text {excl }}^{-1}$)
* assumes no orientational correlation, constant coordination number
- Blouwolff and Fraden (Europhysics Letters, 2006)
* small variation in coordination number ($6 \leq\langle z\rangle \leq 10$), essentially validates RCM

Kenneth Desmond and SVF, PRE (2006)

GCGM display solid \& granular behavior Desmond \& SVF (2006)

GCGM display solid \& granular behavior Desmond \& SVF (2006)

GCGM display solid \& granular behavior Desmond \& SVF (2006)

Column Collapse of Granular Rods

Melissa Trepanier

DMR \#0706353

Experimental Setup

- $D=11.43,15.24 \mathrm{~cm}$ cylinders
- Sand, Acrylic \& Teflon Rods
* $L: 2.5-7.5 \mathrm{~cm}$
* $w: 0.16-0.6 \mathrm{~cm}$
* aspect ratio 4-48
- independent of cylinder velocity
- average runoff in 4 directions

Geometric Transition

Transition Power Laws

$$
\tilde{r}= \begin{cases}\tilde{H}^{1.2 \pm 0.1} & \tilde{H}<1.1 \pm 0.3 \\ \tilde{H}^{0.6 \pm 0.1} & \tilde{H}>1.1 \pm 0.3\end{cases}
$$

Conservation of Volume I: Mesas

- $H_{f}=H_{0}, \tan \theta_{c}=\frac{H_{f}}{r_{f}}$

$$
\frac{r_{f}}{r_{0}}=\frac{1}{2 \tan \theta_{c}}\left(\frac{H_{f}}{r_{0}}+\sqrt{4 \tan ^{2} \theta_{c}-\frac{H_{f}^{2}}{3 r_{0}^{2}}}\right) \approx \frac{1}{2 \tan \theta_{c} r_{0}} H_{f}
$$

Conservation of Volume II: Cones

"Classic" angle of repose theory

$$
\pi r_{0}^{2} H_{0}=\frac{1}{3} \pi H_{f} r_{f}^{2} \Longrightarrow \frac{r_{f}}{r_{0}} \sim\left(H_{0}\right)^{1 / 3}
$$

Conservation of Volume II: Cones

"Classic" angle of repose theory

$$
\pi r_{0}^{2} H_{0}=\frac{1}{3} \pi H_{f} r_{f}^{2} \Longrightarrow \frac{r_{f}}{r_{0}} \sim\left(H_{0}\right)^{1 / 3}
$$

Internal stable cone

$$
\begin{gathered}
\pi r_{0}^{2} H_{0}=\frac{1}{3} \pi H_{f} r_{f}^{2} \Longrightarrow \pi r_{0}^{2} H_{0}=\frac{1}{3} \pi r_{0} \tan \theta_{c} r_{f}^{2} \\
\Longrightarrow r_{f} \sim H_{0}^{1 / 2}
\end{gathered}
$$

Long thin rods form stable piles

Moderately long rods also don't collapse!

$$
\text { AR 16: } h=0.35 r
$$

AR 16: $h=r$

Transition from Solid to Flow

Linear Increase in Collapse Probability

Staples
 Nick Gravish, SVF, David Hu, Dan Goldman (2012)

Biological geometric cohesion: ant rafts

- Rafts contain $\sim 10^{5}$ ants, essential for colony survival
- Cohere through interlocked limbs (stable even when dead)

Vibration induced melting

Height relaxes as stretched exponential $h(t) \propto \exp \left[-(t / \tau)^{\beta}\right]$

- Large τ : rigid pile not shaking hard

Timescale τ vs. vibration acceleration $\Gamma: \tau \propto \exp \left[\Gamma_{0} / \Gamma\right]$

- Large Γ_{0} : pile much more resistant to less vigorous shaking

Optimally Rigid Barb Ratio

Entanglement Number

Nonlinear decay/growth of packing fraction, entanglement

Entanglement density peaks with Γ_{0}
$\rho_{\text {ent }}$

Entanglement density of arcs

- no jamming at $\theta_{\text {subtended }}=0,2 \pi$
- can "easily" find distance between two arcs

$$
\begin{aligned}
& \left(x_{c}^{A}, y_{c}^{A}, \theta_{A}\right), \quad\left(x_{c}^{B}, y_{c}^{B}, \theta_{B}\right) \\
& D_{A B}^{2} \equiv\left(\left(x_{c}^{A}+r \cos \theta_{A}\right)-\left(x_{c}^{B}+r \cos \theta_{B}\right)\right)^{2} \\
& \quad+\left(\left(y_{c}^{A}+r \sin \theta_{A}\right)-\left(y_{c}^{B}+r \sin \theta_{B}\right)\right)^{2}
\end{aligned}
$$

Entanglement density of arcs

- no jamming at $\theta_{\text {subtended }}=0,2 \pi$
- can "easily" find distance between two arcs

$$
\begin{aligned}
& \left(x_{c}^{A}, y_{c}^{A}, \theta_{A}\right), \quad\left(x_{c}^{B}, y_{c}^{B}, \theta_{B}\right) \\
& D_{A B}^{2} \equiv\left(\left(x_{c}^{A}+r \cos \theta_{A}\right)-\left(x_{c}^{B}+r \cos \theta_{B}\right)\right)^{2} \\
& \quad+\left(\left(y_{c}^{A}+r \sin \theta_{A}\right)-\left(y_{c}^{B}+r \sin \theta_{B}\right)\right)^{2}
\end{aligned}
$$

Lagrangian formulation actually easier. Minimize

$$
D^{2}=\left(x_{A}-x_{B}\right)^{2}+\left(y_{A}-y_{B}\right)^{2}
$$

subject to constraints: $\left(x_{A / B}, y_{A / B}\right)$ lie on circle A / B

Rheology of Geometrically Cohesive Granular Materials

- $l=1.3 \mathrm{~cm}$
- $w=0.64 \mathrm{~cm}$
- $l / w=0.5$
- $d=0.1 \mathrm{~cm}$
- $\phi \approx 0.24$
- $D=3.1 \mathrm{~cm}$
- $L=2-11 \mathrm{~cm}$

Spine Length (I)

Canonical stick-slip behavior

Event details

Memory of "major" event

- Treat all 7543 slip events as independent failures

Longer piles significantly weaker

Weibullian "weakest link" statistics (Ken Kamrin)

- Basic assumptions
* multiple small units δL, if any one fails, sample fails
* probability of a unit failing is $P_{f} \propto F^{m} \delta L$
- Success probability of N elements: $S=\Pi\left[1-\alpha F^{m} \delta L\right]$

$$
\begin{aligned}
\ln S & =\sum \ln \left[1-\alpha F^{m} \delta L\right] \approx \sum-\alpha F^{m} d L \\
\Longrightarrow S & \approx \exp \left[-\alpha L F^{m}\right]
\end{aligned}
$$

- Probability of failure if force F and length L :

$$
P_{f}(F, L)=1-e^{-\alpha L F^{m}}
$$

Cumulative Failure distribution function

$$
P_{f}(F, L)=1-e^{-\alpha L F^{m}}
$$

Prediction \#1 (fixed length): $P_{f}(F)=1-e^{-\beta F^{m}}$

Fixed length failure probability distribution: $m=1$

Prediction \#2: Mean yield force $\sim L^{-1}$

- $<F_{Y}>=\int_{0}^{\infty} \alpha L F e^{-\alpha L F} d F \sim L^{-1}$

Mean yield force $\sim L^{-1}$

Prediction \#3: Collapse all data onto single curve

$$
P_{f}(F, L)=1-e^{-\alpha L F^{m}} \Longrightarrow \frac{-1}{L} \log \left[1-\frac{P_{f}(F, L)}{P_{f}(L)}\right] \propto F
$$

Prediction \#3: Collapse all data onto single curve

$$
P_{f}(F, L)=1-e^{-\alpha L F^{m}} \Longrightarrow \frac{-1}{L} \log \left[1-\frac{P_{f}(F, L)}{P_{f}(L)}\right] \propto F
$$

Conclusions

- Geometrically Cohesive Granular Materials (GCGM) exhibit solid-like and stick-slip extensional rheology
- statistical/thermodynamic models show some success in explaining behavior
- extensional rheology well-modeled by weakest-link theory that assumes yield probability proportional to applied force

Flow of Particles Through Wedge Hoppers

> aperture: $0-50 \mathrm{~cm}$ rods: $d=0.08-0.6 \mathrm{~cm}$ $$
L=0.6-8 \mathrm{~cm}
$$

aspect ratio: $1-50$

Summer Saraf

Ordinary (round) Hoppers: Exit Mass Distribution Decays Exponentially

- Zuriguel (2005), distributions scale as $\langle s\rangle$ which may diverge as hopper aperture $R \rightarrow R_{c} \approx 5 D$ ($D=$ particle diameter)
- no memory effects

3+ Decades of Power Law

Independent of hit number (Aperture = 10 d)

Random Walk Models

- Exponential decay implies no correlations:
* 1 particle exits w/probability p
* n particles: $P(n)=p \cdot p \ldots p \cdot(1-p)=p^{n} \cdot(1-p)$

$$
\begin{aligned}
\log P(n) & =\log p^{n}(1-p) \\
& =\log (1-p)+n \log p \\
\exp [\log P(n)] & =e^{[\log (1-p)+n \log p]} \\
P(n) & =e^{\log (1-p)} e^{n \log p} \\
& =(1-p) e^{n \log p}
\end{aligned}
$$

$p<1$ and so $\log p<0$ and $P(N)$ exponentially decays

- generate random numbers until get one $>p$
- number of random numbers is "event size"
- do this many times, make histogram of event size

Simulation: March 2009

Wedge-shaped hopper w/uniform probability

Simulation: March 2009

Wedge-shaped hopper w/uniform probability

nonuniform probability: cell j has probability p_{j}

Simulation: March 2009

Wedge-shaped hopper w/uniform probability

nonuniform probability: cell j has probability p_{j}

"String" orientation

\perp : low exit probability

"String" orientation

\perp : low exit probability
>: larger exit probability
"String" orientation

\perp : low exit probability
>: larger exit probability
||: largest exit probability

Distribution of exit probabilities $p(\theta)$. Need to average over string orientations to find $\langle P(n)\rangle$.

Final Picture

$$
\begin{aligned}
& P(N)=\int_{p_{c}}^{p_{d}} p^{N}(1-p) \mathrm{d} p \\
& =\left[\frac{p^{N+1}}{N+1}-\frac{p^{N+2}}{N+2}\right]_{p_{c}}^{p_{d}} \\
& \approx \frac{p_{d}^{N+1}}{N+1} \approx \frac{\exp \left[N \ln p_{d}\right]}{1+N}
\end{aligned}
$$

As long as $p_{d}<1$, exponential decay.
As soon as $p_{d}=1$:

$$
\frac{1}{N+1}-\frac{1}{N+2} \approx \frac{1}{N^{2}}
$$

Transition to Power Law

Success!

Conclusions II

- Exit-mass probability distribution in wedge hoppers shows broad power-law tail
- Model that assumes characteristic length-scale (strings) with orientation dependent exit probability
* Exponential or power-law tail depending on aperture geometry
- Model and experiment agree over many decades

[^0]: A foundation dedicated to science since 1912.

