# **Entangled Granular Material**





A foundation dedicated to science since 1912.

## **Key Facts about Granular Materials**

- collections of macroscopic (~mm) particles interacting through contact forces (e.g. friction)
- Thermal energy irrelevant ( $k_BT \sim 10^{-21} \text{ J} \ll PE \sim 10^{-5} \text{ J}$ )
  - \* systems "frozen" in metastable state, unable to move to lower energy state without external help
- forces propagate in linear chains



 $2F\sin\theta = W$  $\implies F = \frac{W}{2\sin\theta}$ 



# **Ordinary granular materials are easily manipulated**







### **Geometrically cohesive particles are different**

- Why are rodpiles so rigid?
- Is the rigid rodpile qualitatively different from the sandpile?
- What governs how granular materials rearrange?



### **Rods: Static Packings and Solid Plugs**

- Philipse (*Langmuir*, 1996)
  - \* above aspect ratio  $\sim 35$  pile emerges as solid plug
  - \* mean-field Random Contact Model (packing fraction  $\propto v_{excl}^{-1}$ )
  - \* assumes no orientational correlation, constant coordination number
- Blouwolff and Fraden (Europhysics Letters, 2006)



### GCGM display solid & granular behavior Desmond & SVF (2006)



#### GCGM display solid & granular behavior Desmond & SVF (2006)





### GCGM display solid & granular behavior Desmond & SVF (2006)





### **Column Collapse of Granular Rods**



Melissa Trepanier





# **Experimental Setup**

- D = 11.43, 15.24 cm cylinders
- Sand, Acrylic & Teflon Rods
  \* L: 2.5 7.5 cm
  \* w: 0.16 0.6 cm
  \* concet ratio 4 49
  - \* aspect ratio 4-48
- independent of cylinder velocity
- average runoff in 4 directions



# **Geometric Transition**



#### **Transition Power Laws**



### **Conservation of Volume I: Mesas**



$$\pi r_0^2 H_0 \qquad = \quad \pi \left(\frac{H_f}{r_0}\right)^3 \left[\frac{1}{3\tan^2\theta_c} - \frac{1}{\tan\theta_c}\frac{r_f}{H_f} + \left(\frac{r_f}{H_f}\right)^2\right]$$

• 
$$H_f = H_0, \tan \theta_c = \frac{H_f}{r_f}$$
  
$$\frac{r_f}{r_0} = \frac{1}{2 \tan \theta_c} \left( \frac{H_f}{r_0} + \sqrt{4 \tan^2 \theta_c - \frac{H_f^2}{3r_0^2}} \right) \approx \frac{1}{2 \tan \theta_c r_0} H_f$$

#### **Conservation of Volume II: Cones**



 $\pi r_0^2 H_0 = \frac{1}{3} \pi H_f r_f^2 \Longrightarrow \frac{r_f}{r_0} \sim (H_0)^{1/3}$ 

#### **Conservation of Volume II: Cones**

"Classic" angle of repose theory  $H_0$   $r_0$   $H_f$   $\frac{H_f}{r_f} = \tan \theta_c$ 

$$\pi r_0^2 H_0 = \frac{1}{3} \pi H_f r_f^2 \Longrightarrow \frac{r_f}{r_0} \sim (H_0)^{1/3}$$

Internal stable cone



### Long thin rods form stable piles



### Moderately long rods also don't collapse!







#### **Transition from Solid to Flow**



## **Linear Increase in Collapse Probability**



#### **Staples** Nick Gravish, SVF, David Hu, Dan Goldman (2012)





### **Biological geometric cohesion: ant rafts**





- Rafts contain  $\sim 10^5$  ants, essential for colony survival
- Cohere through interlocked limbs (stable even when dead)

### **Vibration induced melting**



Height relaxes as stretched exponential  $h(t) \propto \exp[-(t/\tau)^{\beta}]$ 



• Large  $\tau$ : rigid pile not shaking hard



• Large  $\Gamma_0$  : pile much more resistant to less vigorous shaking

## **Optimally Rigid Barb Ratio**



# **Entanglement Number**



### Nonlinear decay/growth of packing fraction, entanglement





Entanglement density peaks with  $\Gamma_0$ 

## **Entanglement density of arcs**



- no jamming at  $\theta_{subtended} = 0, 2\pi$
- can "easily" find distance between two arcs

$$(x_c^A, y_c^A, \theta_A), \quad (x_c^B, y_c^B, \theta_B)$$
$$D_{AB}^2 \equiv ((x_c^A + r\cos\theta_A) - (x_c^B + r\cos\theta_B))^2 + ((y_c^A + r\sin\theta_A) - (y_c^B + r\sin\theta_B))^2$$

# **Entanglement density of arcs**



- no jamming at  $\theta_{subtended} = 0, 2\pi$
- can "easily" find distance between two arcs

$$(x_c^A, y_c^A, \theta_A), \quad (x_c^B, y_c^B, \theta_B)$$
  
$$D_{AB}^2 \equiv ((x_c^A + r\cos\theta_A) - (x_c^B + r\cos\theta_B))^2 + ((y_c^A + r\sin\theta_A) - (y_c^B + r\sin\theta_B))^2$$

Lagrangian formulation actually easier. Minimize

$$D^2 = (x_A - x_B)^2 + (y_A - y_B)^2$$

subject to constraints:  $(x_{A/B}, y_{A/B})$  lie on circle A/B

# **Rheology of Geometrically Cohesive Granular Materials**

- *l* = 1.3cm
- w = 0.64cm
- l/w = 0.5
- d = 0.1cm
- $\phi \approx 0.24$
- D = 3.1cm
- L = 2 11cm



Spine Length (I)

# **Canonical stick-slip behavior**



### **Event details**



#### Memory of "major" event



• Treat all 7543 slip events as independent failures

### Longer piles significantly weaker



#### Weibullian "weakest link" statistics (Ken Kamrin)

### • Basic assumptions

\* multiple small units  $\delta L$ , if any one fails, sample fails \* probability of a unit failing is  $P_f \propto F^m \delta L$ 

• Success probability of N elements:  $S = \Pi [1 - \alpha F^m \delta L]$ 

$$\ln S = \sum \ln [1 - \alpha F^m \delta L] \approx \sum -\alpha F^m dL$$
$$\implies S \approx \exp [-\alpha L F^m]$$

• Probability of failure *if* force *F* and length *L*:

$$P_f(F,L) = 1 - e^{-\alpha L F^m}$$

# Cumulative Failure distribution function $P_f(F,L) = 1 - e^{-\alpha L F^m}$



**Prediction #1 (fixed length):**  $P_f(F) = 1 - e^{-\beta F^m}$ 



### **Fixed length failure probability distribution:** m = 1



#### **Prediction #2: Mean yield force** $\sim L^{-1}$

•  $\langle F_Y \rangle = \int_0^\infty \alpha LF e^{-\alpha LF} dF \sim L^{-1}$ 



## Mean yield force $\sim L^{-1}$



# **Prediction #3: Collapse all data onto single curve**

$$P_f(F,L) = 1 - e^{-\alpha L F^m} \Longrightarrow \frac{-1}{L} \log \left[ 1 - \frac{P_f(F,L)}{P_f(L)} \right] \propto F$$

#### **Prediction #3: Collapse all data onto single curve**

$$P_f(F,L) = 1 - e^{-\alpha L F^m} \Longrightarrow \frac{-1}{L} \log \left[ 1 - \frac{P_f(F,L)}{P_f(L)} \right] \propto F$$



## Conclusions

- Geometrically Cohesive Granular Materials (GCGM) exhibit solid-like and stick-slip *extensional* rheology
- statistical/thermodynamic models show some success in explaining behavior
- extensional rheology well-modeled by weakest-link theory that assumes yield probability proportional to applied force

## **Flow of Particles Through Wedge Hoppers**





aperture: 0-50cm rods: d = 0.08 - 0.6cm L = 0.6 - 8cm aspect ratio: 1 - 50



Summer Saraf

## Ordinary (round) Hoppers: Exit Mass Distribution Decays Exponentially



- Zuriguel (2005), distributions scale as ⟨s⟩ which may diverge as hopper aperture R → R<sub>c</sub> ≈ 5D (D=particle diameter)
- no memory effects

#### **3+ Decades of Power Law**



Large events more common than expected

#### **Independent of hit number (Aperture = 10***d***)**



## **Random Walk Models**

- Exponential decay implies no correlations:
  - $\ast$  1 particle exits w/probability p

 $\mathcal{P}$ 

\* *n* particles:  $P(n) = p \cdot p \dots p \cdot (1-p) = p^n \cdot (1-p)$ 

 $\log P(n) = \log p^n (1-p)$  $= \log(1-p) + n \log p$ 

$$\exp \left[\log P(n)\right] = e^{\left[\log(1-p)+n\log p\right]}$$
$$P(n) = e^{\log(1-p)} e^{n\log p}$$
$$= (1-p)e^{n\log p}$$

p < 1 and so  $\log p < 0$  and P(N) exponentially decays

- generate random numbers until get one > p
- number of random numbers is "event size"
- do this many times, make histogram of event size

## **Simulation: March 2009**

## Wedge-shaped hopper w/uniform probability

| p | p | p | p | p | p | p | p |
|---|---|---|---|---|---|---|---|
|---|---|---|---|---|---|---|---|

## **Simulation: March 2009**

#### Wedge-shaped hopper w/uniform probability



## *nonuniform* probability: cell j has probability $p_j$

| $p_{j}$ | $p_{j}$ | $p_j^2$ | Jam | $p_j^2$ | $p_{j}$ | $p_{j}$ | $p_{j}$ |
|---------|---------|---------|-----|---------|---------|---------|---------|
|---------|---------|---------|-----|---------|---------|---------|---------|

## **Simulation: March 2009**

#### Wedge-shaped hopper w/uniform probability



## *nonuniform* probability: cell j has probability $p_j$



## "String" orientation



# $\perp$ : low exit probability

## "String" orientation



⊥: low exit probability>: larger exit probability

## "String" orientation



- $\perp$ : low exit probability
- >: larger exit probability
- ||: largest exit probability

Distribution of exit probabilities  $p(\theta)$ . Need to average over *string orientations* to find  $\langle P(n) \rangle$ .

#### **Final Picture**



As long as  $p_d < 1$ , exponential decay.

As soon as  $p_d = 1$ :

$$\frac{1}{N+1} - \frac{1}{N+2} \approx \frac{1}{N^2}$$

#### **Transition to Power Law**



#### **Success!**



# **Conclusions II**

- Exit-mass probability distribution in wedge hoppers shows broad power-law tail
- Model that assumes characteristic length-scale (strings) with orientation dependent exit probability
  - \* Exponential or power-law tail depending on aperture geometry
- Model and experiment agree over many decades