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Key Facts about Granular Materials

• collections of macroscopic (∼mm) particles interacting through contact
forces (e.g. friction)

• Thermal energy irrelevant (kBT ∼ 10−21 J� PE ∼ 10−5 J)

∗ systems “frozen” in metastable state, unable to move to lower energy
state without external help

• forces propagate
in linear chains
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Ordinary granular materials are easily manipulated



Geometrically cohesive particles are different

• Why are rodpiles so rigid?

• Is the rigid rodpile qualitatively
different from the sandpile?

• What governs how granular
materials rearrange?



Rods: Static Packings and Solid Plugs

• Philipse (Langmuir, 1996)

∗ above aspect ratio ∼ 35 pile emerges as solid plug
∗ mean-field Random Contact Model (packing fraction ∝ v−1excl)∗ assumes no orientational correlation, constant coordination number

• Blouwolff and Fraden ( Europhysics Letters, 2006)

∗ small variation in
coordination number
(6 ≤ 〈z〉 ≤ 10), essentially
validates RCM

Kenneth Desmond and SVF, PRE (2006)



GCGM display solid & granular behavior Desmond & SVF (2006)
S

tic
k-

sl
ip



GCGM display solid & granular behavior Desmond & SVF (2006)
S

tic
k-

sl
ip

S
ol

id



GCGM display solid & granular behavior Desmond & SVF (2006)
S

tic
k-

sl
ip

Tr
an

si
tio

n
S

ol
id

S
m

al
le

rC
on

ta
in

er
→



Column Collapse of Granular Rods

Melissa Trepanier

DMR #0706353
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Experimental Setup

• D = 11.43, 15.24 cm cylinders

• Sand, Acrylic & Teflon Rods
∗ L : 2.5− 7.5 cm
∗ w : 0.16− 0.6 cm
∗ aspect ratio 4-48

• independent of cylinder velocity

• average runoff in 4 directions



Geometric Transition

Low Piles

Tall Piles



Transition Power Laws

r̃ =

{
H̃1.2±0.1 H̃ < 1.1± 0.3

H̃0.6±0.1 H̃ > 1.1± 0.3



Conservation of Volume I: Mesas

r0

H0
rf

Hf
θc

πr20H0 = π
(
Hf
r0

)3 [
1

3 tan2 θc
− 1

tan θc

rf
Hf

+
(
rf
Hf

)2]

• Hf = H0, tan θc =
Hf
rf

rf
r0

=
1

2 tan θc

Hf

r0
+

√
4 tan2 θc −

H2
f

3r20

 ≈ 1

2 tan θcr0
Hf



Conservation of Volume II: Cones
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Long thin rods form stable piles



Moderately long rods also don’t collapse!



Transition from Solid to Flow



Linear Increase in Collapse Probability



Staples
Nick Gravish, SVF, David Hu, Dan Goldman (2012)



Biological geometric cohesion: ant rafts

• Rafts contain ∼ 105 ants, essential for colony survival

• Cohere through interlocked limbs (stable even when dead)



Vibration induced melting
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Height relaxes as stretched exponential h(t) ∝ exp[−(t/τ)β]

• Large τ : rigid pile not shaking hard



Timescale τ vs. vibration acceleration Γ: τ ∝ exp[Γ0/Γ]

• Large Γ0 : pile much more resistant to less vigorous shaking



Optimally Rigid Barb Ratio

Γ0

Barb ratio



Entanglement Number



Nonlinear decay/growth of packing fraction, entanglement

Γmax
0

ρ (cm−3) 〈N〉

Barb ratio l/w



Entanglement density peaks with Γ0

ρent



Entanglement density of arcs

• no jamming at θsubtended = 0, 2π

• can “easily” find distance between two arcs

(xAc , y
A
c , θA), (xBc , y

B
c , θB)

D2
AB ≡ ((xAc + r cos θA)− (xBc + r cos θB))2

+((yAc + r sin θA)− (yBc + r sin θB))2



Entanglement density of arcs

• no jamming at θsubtended = 0, 2π

• can “easily” find distance between two arcs

(xAc , y
A
c , θA), (xBc , y

B
c , θB)

D2
AB ≡ ((xAc + r cos θA)− (xBc + r cos θB))2

+((yAc + r sin θA)− (yBc + r sin θB))2

Lagrangian formulation actually easier. Minimize

D2 = (xA − xB)2 + (yA − yB)2

subject to constraints: (xA/B, yA/B) lie on circle A/B



Rheology of Geometrically Cohesive Granular Materials

• l = 1.3cm

• w = 0.64cm

• l/w = 0.5

• d = 0.1cm

• φ ≈ 0.24

• D = 3.1cm

• L = 2− 11cm
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Canonical stick-slip behavior



Event details

← Fyield←
−

←
−

Fdrop



Memory of “major” event

• Treat all 7543 slip events as independent failures



Longer piles significantly weaker



Weibullian “weakest link” statistics (Ken Kamrin)

• Basic assumptions

∗ multiple small units δL, if any one fails, sample fails
∗ probability of a unit failing is Pf ∝ FmδL

• Success probability of N elements: S = Π [1− αFmδL]

lnS =
∑

ln [1− αFm
δL] ≈

∑
−αFm

dL

=⇒ S ≈ exp [−αLFm
]

• Probability of failure if force F and length L:

Pf(F,L) = 1− e−αLF
m



Cumulative Failure distribution function
Pf(F,L) = 1− e−αLFm
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Prediction #1 (fixed length): Pf(F ) = 1− e−βFm
P
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Fixed length failure probability distribution: m = 1



Prediction #2: Mean yield force ∼ L−1

• < FY >=
∫∞
0
αLFe−αLFdF ∼ L−1
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Mean yield force ∼ L−1



Prediction #3: Collapse all data onto single curve

Pf(F,L) = 1− e−αLF
m

=⇒ −1

L
log

[
1− Pf(F,L)

Pf(L)

]
∝ F
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Conclusions

• Geometrically Cohesive Granular Materials (GCGM) exhibit
solid-like and stick-slip extensional rheology

• statistical/thermodynamic models show some success in
explaining behavior

• extensional rheology well-modeled by weakest-link theory that
assumes yield probability proportional to applied force



Flow of Particles Through Wedge Hoppers

aperture: 0-50cm
rods: d = 0.08− 0.6cm

L = 0.6− 8cm
aspect ratio: 1− 50

Summer Saraf



Ordinary (round) Hoppers: Exit Mass
Distribution Decays Exponentially

• Zuriguel (2005), distributions scale as 〈s〉 which may diverge as hopper
aperture R→ Rc ≈ 5D (D=particle diameter)

• no memory effects



3+ Decades of Power Law

Large events more common than expected



Independent of hit number (Aperture = 10d)



Random Walk Models
• Exponential decay implies no correlations:
∗ 1 particle exits w/probability p
∗ n particles: P (n) = p · p . . . p · (1− p) = pn · (1− p)

logP (n) = log pn(1− p)
= log(1− p) + n log p

exp [logP (n)] = e[log(1−p)+n log p]

P (n) = elog(1−p) en log p

= (1− p)en log p

p < 1 and so log p < 0 and P (N) exponentially decays

p
• generate random numbers until get one > p
• number of random numbers is “event size”
• do this many times, make histogram of event size



Simulation: March 2009

Wedge-shaped hopper w/uniform probability
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“String” orientation
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“String” orientation

~~
~~~ ~ ⊥: low exit probability

>: larger exit probability



“String” orientation

~~~~~~
⊥: low exit probability
>: larger exit probability
‖: largest exit probability

Distribution of exit probabilities p(θ). Need to average over
string orientations to find 〈P (n)〉.



Final Picture

P (N) =
∫ pd
pc
pN(1− p) dp

=
[
pN+1

N+1 −
pN+2

N+2

]pd
pc

≈ pN+1
d
N+1 ≈

exp[N ln pd]
1+N

As long as pd < 1, exponential decay.

As soon as pd = 1:

1

N + 1
− 1

N + 2
≈ 1

N2



Transition to Power Law



Success!



Conclusions II

• Exit-mass probability distribution in wedge hoppers shows
broad power-law tail

• Model that assumes characteristic length-scale (strings) with
orientation dependent exit probability

∗ Exponential or power-law tail depending on aperture geometry

• Model and experiment agree over many decades


