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Astrophysics Simulations

Growing importance
Many examples:

Cosmology
Globular clusters
Tidal disruption
Accretion disks
Planet formation
. . .



GW150914: A Famous Example
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50 time steps
3 CPU hours (IBM
7090)
151× 51 grid points
t = 1.8M

“In summary, the
numerical solution of
the Einstein field
equations presents no
insurmountable
difficulties.”

ANNALS OF PHYSICS: f8, 304-331 (1964) 
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The problem of two interacting masses is investigated within the framework 
of geometrodynamics. It is assumed that the space-time continuum is free of 
all real sources of mass or charge; particles are identified with multiply con- 
nected regions of empty space. Particular attention is focused on an asymp- 
totically flat space containing a “handle” or “wormhole.” When the two 
“mouths” of the wormhole are well separated, they seem to appear as two cen- 
ters of gravitational attraction of equal mass. To simplify the problem, it is 
assumed that the metric is invariant under rotations about the axis of sym- 
metry, and symmetric with respect to the time t = 0 of maximum separation 
of the two mouths. Analytic initial value data for this case have been ob- 
tained by Misner; these contain two arbitrary parameters, which are uniquely 
determined when the mass of the two mouths and their initial separation have 
been specified. We treat a particular case in which the ratio of mass to initial 
separation is approximately one-half. To determine a unique solution of the 
remaining (dynamic) field equations, the coordinate conditions go- = -& are 
imposed; then the set of second order equations is transformed into a quasi- 
linear first order system and the difference scheme of Friedrichs used to ob- 
tain a numerical solution. Its behavior agrees qualitatively with that of the 
one-body problem, and can be interpreted as a mutual attraction and pinching- 
off of the two mouths of the wormhole. 

I. INTRODUCTION 

Wheeler (1, 2) has used the term “geometrodynamics” to characterize those 
solutions of the field equations for gravitation and electromagnetism’ 

41 = R,v - ?4 g& = 2(F,,FP - Pi gj,.F,sF=B) (l.la) 

FPu;v = 0 (l.lb) 

1 Throughout this paper Greek subscripts and superscripts range from 0 to 3 and Latin 
ones from 1 to 3. Also, units are chosen so that G (universal gravitation constant) = c = 1. 
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Focus of This Talk: PDEs

Hydrodynamics
MHD
Gravity (Newton; Einstein)
Radiation transport
. . .

Not N -body, Monte Carlo
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The Dirty Secret

For the past 50 years, dominant algorithm essentially
unchanged!

Finite differencing (finite volume)
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The First Stirrings . . .

Solutions of Einstein’s equations are smooth (away from
singularities)
Should use higher-order numerical methods

b b b b b b b b b b b b� �

one-sided centered

coefficients diverge as N ! 1 coefficients converge

b b b b b b b b b b b b•
spectral



Why is SpEC So Good for BBHs?
Approximate solution as sum of N basis functions

f(x, t) =
N−1∑
k=0

fk(t)φk(x)

Spectral method:

fk(t) =

∫
f(x, t)φk(x) dx

Pseudospectral method (Lanczos 1938):

fk(t) =
N−1∑
n=0

wnf(xn, t)φk(xn)

Uses N collocation points {xn} → {f(xn, t)}
(momentum space vs. position space)
Compute spatial derivatives analytically

Exponential convergence for smooth solutions
No good for shocks (Gibbs)
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Including Matter: BH-NS and NS-NS
Collisions

GW sources
Short-duration GRBs

Need full GR!
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Multimessenger Astronomy



Multimessenger Astronomy Is Here!



NSNS and BHNS: GR Hydro in SpEC

Standard finite volume HRSC
- WENO5 + HLL
- MP5 + Roe

FMR
GR⇔ hydro grid via interpolation
Accuracy

- GW phase: ∼ 1 radian (10
orbits)

- BH: ∼ 1%
- Matter: 10 – 50%



Challenges for BBH Codes

LIGO SN will improve by ∼ 3 in next 3 years
– Event rate ∼ 1 per day
– Some events with SN ∼ 100. Need δφ . .01 at merger

Another factor of 4 in 10 years (Voyager)
LISA: SN ∼ 10, 000 in 2030



Challenges for Neutron Star Codes

Computational errors are too large, 1 – 10%
Can’t even quantify the errors
Simulations take too long

Methods do not scale to extreme-scale machines
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What’s Wrong With 1% Accuracy?

Examples:
Mdisk ∼ 1%Mtot

Core-collapse supernovae
EOS from tidal effects in NSNS or BHNS
Wrong physics from unresolved scales, e.g. MRI
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What’s So Hard?

NS surface + shocks =⇒ solution not smooth
Multiple time scales
Multiple spatial scales (adaptivity)
Geometry changes (disruption, merger, black hole
formation)
Multiphysics (GR, hydro, MHD, neutrinos, photons, nuclear
reactions,. . . )

The answer:

(?)

Discontinuous Galerkin
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Finite Volume Methods
solution represented by cell averages

flux reconstruction can handle shocks
but high order requires wide stencils

Dk Dk+1Dk�1

Figure: Francois Hebert
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Spectral Code

solution expanded on a local basis

exponential convergence in smooth regions
but flux can’t do shocks
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DG Code

solution expanded on a local basis (local high order)

exponential convergence in smooth regions
formulation allows “arbitrary” fluxes—shocks OK
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How Does DG Work?

∂u

∂t
+ ∂aF

a(u) = s

Expand in basis functions:

u =
∑
i

uiφi(x), F a =
∑
i

F a
i φi(x), . . .

N eqns. for ui by projecting residual on space of test functions:∫ (
∂u

∂t
+ ∂aF

a − s
)
φi(x) d

3x = 0 (Galerkin)



The Standard Manipulation:

In each subdomain:∫
∂aF

a φi(x) d
3x =

∫
∂a(F

aφi) d
3x−

∫
F a∂aφi d

3x

=

∮
F anaφi d

2S −
∫
F a∂aφi d

3x

→
∮

(F a)∗naφi d
2S −

∫
F a∂aφi d

3x

(F a)∗ = numerical flux (art!)
Generalize to curved spacetime (Teukolsky 2016)



The Standard Manipulation:

In each subdomain:∫
∂aF

a φi(x) d
3x =

∫
∂a(F

aφi) d
3x−

∫
F a∂aφi d

3x

=

∮
F anaφi d

2S −
∫
F a∂aφi d

3x

→
∮

(F a)∗naφi d
2S −

∫
F a∂aφi d

3x

(F a)∗ = numerical flux (art!)
Generalize to curved spacetime (Teukolsky 2016)



The Standard Manipulation:

In each subdomain:∫
∂aF

a φi(x) d
3x =

∫
∂a(F

aφi) d
3x−

∫
F a∂aφi d

3x

=

∮
F anaφi d

2S −
∫
F a∂aφi d

3x

→
∮

(F a)∗naφi d
2S −

∫
F a∂aφi d

3x

(F a)∗ = numerical flux (art!)
Generalize to curved spacetime (Teukolsky 2016)



The Standard Manipulation:

In each subdomain:∫
∂aF

a φi(x) d
3x =

∫
∂a(F

aφi) d
3x−

∫
F a∂aφi d

3x

=

∮
F anaφi d

2S −
∫
F a∂aφi d

3x

→
∮

(F a)∗naφi d
2S −

∫
F a∂aφi d

3x

(F a)∗ = numerical flux (art!)
Generalize to curved spacetime (Teukolsky 2016)



The Standard Manipulation:

In each subdomain:∫
∂aF

a φi(x) d
3x =

∫
∂a(F

aφi) d
3x−

∫
F a∂aφi d

3x

=

∮
F anaφi d

2S −
∫
F a∂aφi d

3x

→
∮

(F a)∗naφi d
2S −

∫
F a∂aφi d

3x

(F a)∗ = numerical flux (art!)
Generalize to curved spacetime (Teukolsky 2016)



Relativistic Hydro Test Example

Relativistic
inflow

High-density
gas

Relativistic inflow

Interacting
shocks and
contact
discontinuities

Figure: Francois Hebert



SpECTRE: A Radically New Computer Code
How will we accomplish our goal?
Moore’s Law is broken
Next-generation machines will have millions of processors

IBM Blue Gene Q chip
3/4” square
1.5 billion transistors



Why Not Run Current Codes on Millions of
Processors?

Currently, cells distributed across processors, MPI to
communicate data
Processors often idle during communication
Load balancing: processors doing different amounts of
computing

– inside turbulent NS vs in vacuum
– apparent horizon finding
– trace light rays or neutrino paths (radiative transfer)

Solution: Task-based parallelism (in principle!)



A New Way to Parallelize

Conventional Parallelization (e.g. SpEC)

Task-based Parallelization (SpECTRE)



Implementing Task-Based Parallelism
No standard packages
MPI + OpenMP
HPX
Charm++
...

101 102 103 104 105 106

Cores

100

101

102

103

104

S
p

e
e
d

u
p

Orszag-Tang Vortex, BlueWaters

330× 330× 2 cells
23 points per cell

Figure: Scott Field



Time Profile
10 steps of relativistic MHD test

Red/Yellow: data to interfaces (hides RHS vol.)
Blue: fluxes to elements Purple: slope limiting
Cyan: setup Black: Charm++ White: idle



Challenges — Local Time Stepping
AMR→ large range of Courant conditions
Advance each element with its own timestep (task-based!)



How to Fool a Computer Allocation
Committee:

Advance all elements in lockstep! Perfect scaling, but only 10%
of machine doing useful work

Dubey et al. (2014) survey of AMR packages:
Scaling bad if local time stepping turned on
Exception: Uintah (task-based parallelism)
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Summary

After 50 years of finite differencing, it’s time for us to move
on if we want to tackle complex problems
Algorithms like DG are high order, robust for shocks, local
(good scaling)
Task-based parallelism will enable exascale computing




