Clustronics on quantum many-body architecture Mack Kira

Quantum Science Theory Lab

Many-body physics dream

 $i\hbar\frac{\partial}{\partial t}\Psi = \hat{H}\Psi$ Propagate quantum processes to macroscopic world despite and because of many-body interactions. 2

Many-body architecture

Quantization Ψ (all possible states of a particle)

Info
$$[\Psi(N \text{ ples})] = (\# \text{ of elements})^N$$

Bit

Information content grows exponentially with particle number!!!

Interactions couple/scramble possibilities

Structure in quantum architecture?

Measurement in quantum architecture distribution of outcomes

Ever increasing information using cumulants (Thorvald N. Thiele, 1889): **1)** Mean $\langle x \rangle$, **2)** Variance $\Delta \langle x^2 \rangle \equiv \langle x^2 \rangle - \langle x \rangle \langle x \rangle$,... **C)** Cumulant *C* $\Delta \langle x^C \rangle \equiv \langle x^C \rangle$ – all factorizations

All cumulants = full information of distribution

Cluster-expansion approach

MB field operators: $\hat{\Psi}(\mathbf{r})$ & $\hat{\Psi}^{\dagger}(\mathbf{r})$

Clusters:

$$\Delta \langle C \rangle = \langle \hat{\Psi}_1^{\dagger} \cdots \hat{\Psi}_C^{\dagger} \hat{\Psi}_C \cdots \hat{\Psi}_1 \rangle - \text{all factorizations}$$

Terminology:

1st-principles with cluster expansion

• exactly solvable & nonperturbative until Δ <C+1> cluster is formed

3) Ideal approach for following quasiparticle formation & dynamics

Clustronics = follow/control many-body processes through cluster kinetics

General proof of sequential clustronics

Clustronics=

Natural & 1st-principles description of quantum processes

Typical 1st-principles cluster dynamics

$$S_{0,3}^{\mathbf{k}',\mathbf{k}} \equiv \frac{V_{\mathbf{k}}}{2} \left(\sqrt{N_{\mathbf{C}}} \left(1 + f_{\mathbf{k}} + s_{\mathbf{k}} \right) (s_{\mathbf{k}'} + s_{\mathbf{k}+\mathbf{k}'}) + \sqrt{N_{\mathbf{C}}} f_{\mathbf{k}'} s_{\mathbf{k}+\mathbf{k}'}^{\star} + \sqrt{N_{\mathbf{C}}} f_{\mathbf{k}+\mathbf{k}'} s_{\mathbf{k}'}^{\star} \right).$$
(C.5)

The full correlation dynamics becomes

$$i\hbar \frac{\partial}{\partial t} T_{0,3}^{\mathbf{k'},\mathbf{k}} = \left(E_{\mathbf{k}}^{\text{ren}} + E_{\mathbf{k'}}^{\text{ren}} + E_{\mathbf{k}+\mathbf{k'}}^{\text{ren}} \right) T_{0,3}^{\mathbf{k'},\mathbf{k}} + \Delta_{\mathbf{k}}^{\text{ren}} T_{2,1}^{\mathbf{k'},\mathbf{k}-\mathbf{k}-\mathbf{k'}} + \Delta_{\mathbf{k'}}^{\text{ren}} T_{2,1}^{\mathbf{-k}-\mathbf{k'},\mathbf{k}} - \Delta_{\mathbf{k}+\mathbf{k'}}^{\text{ren}} T_{2,1}^{\mathbf{-k}-\mathbf{k'},\mathbf{k}} - \Delta_{\mathbf{k'}}^{\text{ren}} T_{2,1}^{\mathbf{-k}-\mathbf{k'},\mathbf{k}} - \Delta_{\mathbf{k'},\mathbf{k'}}^{\text{ren}} T_{2,1}^{\mathbf{-k}-\mathbf{k'},\mathbf{k'}} + S_{0,3}^{\mathbf{k},\mathbf{k'},\mathbf{k}} + S_{0,3}^{\mathbf{k},\mathbf{k'},\mathbf{k'}} + (1 + f_{\mathbf{k}} + f_{\mathbf{k}+\mathbf{k'}}) \sum_{\mathbf{l}} V_{\mathbf{l}-\mathbf{k}} T_{0,3}^{\mathbf{k'},\mathbf{l}} + (1 + f_{\mathbf{k'}} + f_{\mathbf{k}+\mathbf{k'}}) \sum_{\mathbf{l}} V_{\mathbf{l}-\mathbf{k'}} T_{0,3}^{\mathbf{k'},\mathbf{k'}} + (1 + f_{\mathbf{k}} + f_{\mathbf{k'}}) \sum_{\mathbf{l}} V_{\mathbf{l}-\mathbf{k}} T_{0,3}^{\mathbf{k'},\mathbf{k'}} + (1 + f_{\mathbf{k}} + f_{\mathbf{k'}}) \sum_{\mathbf{l}} V_{\mathbf{l}} T_{0,3}^{\mathbf{k'},\mathbf{k'}} + (1 + f_{\mathbf{k}} + f_{\mathbf{k'}}) \sum_{\mathbf{l}} V_{\mathbf{l}-\mathbf{k'}} T_{1,2}^{\mathbf{k'},\mathbf{k'}} + s_{\mathbf{k'}} \sum_{\mathbf{l}} \left[V_{\mathbf{l}+\mathbf{k'}} T_{\mathbf{l},\mathbf{k'}}^{\mathbf{l},\mathbf{k'}} + (1 + f_{\mathbf{k'}} + f_{\mathbf{k'}}) \sum_{\mathbf{l}} V_{\mathbf{l}-\mathbf{k'}} T_{1,2}^{\mathbf{l},\mathbf{k'}} + s_{\mathbf{k'}} T_{1,2}^{\mathbf{l},\mathbf{k'}} + V_{\mathbf{l}-\mathbf{k'}} T_{1,2}^{\mathbf{l},\mathbf{k'}} + s_{\mathbf{k'}} T_{1,2}^{\mathbf{l},\mathbf{k'}} + s_{\mathbf{k'}} T_{1,2}^{\mathbf{l},\mathbf{k'}} + V_{\mathbf{k}+\mathbf{k'}} (s_{\mathbf{k}} + s_{\mathbf{k'}}) \sum_{\mathbf{l}} T_{1,2}^{\mathbf{l}-\mathbf{k'},\mathbf{l}} + H_{0,3}^{\mathbf{k'},\mathbf{k'}} + H_{0,3}^{\mathbf{k'}$$

Ann. Phys. **356**, 185 (2015)

Contents

Clustronics = follow/control many-body processes through cluster kinetics

Clustronics in 4 diverse theory-experiment examples: [1] Quantum-optical spectroscopy [2] Ultrafast quantum electronics [3] Quasiparticle collisions [4] Bose-Einstein condensates

[1] Quantum-optical spectroscopy

Quantum-optical spectroscopy

PRA 73, 013813 (2006): Cluster-expansion analysis of quantumoptical excitations

Usual laser spectroscopy "detached" from interesting quasiparticles

Quantum spectroscopy = excite (detect) quasiparticles DIRECTLY with quantum light (quantum-light emission)

New quasiparticle resonances

- Δabsorption via typical pump-probe measurement in GaAs QW
- Change pump-photon correlations: Binding $\equiv E_{1s} \hbar \omega_{\text{probe}}$

Quantum pump resolves NEW discrete resonances below BiX

What did we see?

• 3, 4, 5, rings... = 3, 4, 5... eh pairs

Positive dropleton ID

[2] ultrafast quantum electronics

Exp.: Rupert Huber group, Regensburg

Goal – realize lightwave electronics

Light creates & moves electrons, holes, and quasiparticles faster than scattering quantum coherent effects

Strong-field physics

high-order harmonic generation Observation of a bulk crystal

2011

nature

physics

Shambhu Ghimire¹, Anthony D. DiChiara², Emily Sistrunk², Pierre Agostini², Louis F. DiMauro² and David A. Reis^{1,3}*

Unique semiconductor physics?

Semiconductor excitations

Experiment: GaSe, gap=2eV = 16*30THz photons 100fs pulse with E > 100MV/cm, >1eV/Å, blasting e!!!!

Semiconductor Bloch equations

Coupled quantum kinetics of microscopic polarization:

$$P_{\mathbf{k}}^{\lambda,\nu} \equiv \langle a_{\lambda,\mathbf{k}}^{\dagger} a_{\nu,\mathbf{k}} \rangle$$

Microscopic density:

$$f_{\mathbf{k}}^{\lambda} \equiv \langle a_{\lambda,\mathbf{k}}^{\dagger} a_{\lambda,\mathbf{k}} \rangle$$

phys. stat. sol. B **248**, 863 (2011).

High-harmonic generation (HHG)

Nonperturbative quantum interference

Nonperturbative quantum interference

Paths 1 + 2 appear simultaneouslyquantum interference
$$P_{\mathbf{k}}^{\mathrm{h1,e}} = P_{\mathrm{odd}}(E) + P_{\mathrm{even}}(E)$$
ConstructiveSign flip, E to -E:
 $P_{\mathrm{odd}}(-E) + P_{\mathrm{even}}(-E) = -P_{\mathrm{odd}}(E) + P_{\mathrm{even}}(E)$ Destructive!!!

[3] Quasiparticle collider

Exp.: Rupert Huber group, Regensburg + Sherwin, UC Santa Barbara

Harmonic sideband generation in solids

1) Excite coherent excitons optically

2) Accelerate/ionize electron-hole pairs

2012 LETTER

$\label{eq:experimental} Experimental \, observation \, of \, electron-hole \, recollisions$

doi:10.1038/nature10864

B. Zaks¹, R. B. Liu² & M. S. Sherwin¹

3) Measure optical response

Pulsed HSG

- 60nm thick WSe₂ with strong 1s X (60meV)
- 10fs optical pulse @1s X
- 100fs THz pulse, 17MV/cm
- E-h recollision

1. Creates coherent X/e-h- pairs

2. Ac/decelerates e-h separation

3. Photon emission as sidebands

Highly analogous to atomic 3-step modelWill we detect the expected delay?

+ finite lifetime of coherences

Recollisions in time domain

- 10fs optical pulse Coh.X created << 50fs THz cycle
- Measure total HSG I vs. preparation time t_{ex}

- Global delay = HSG emission delayed (as in 3-step model)
- Bad (low HSG) vs. good (high HSG) preparation times.

Lightwave valleytronics in WSe₂ monolayer

Valley physics!

[4] Atomic BECs with strong interactions

BECs with strong interactions

Cluster dynamics in excitation picture

Quantum depletion creates non-condensed clusters sequentially

Nonperturbative truncation in terms of cluster

an "exact" description strongly interacting BECs

Hyperbolic Bloch Equations (compare SBEs)

HBEs get quantitative

Switch to unitarity explained quantitatively by doublet HBEs

Doublets dominate until >100µs

Clustronics so far...

Theory insights:

- 1st principles cluster kinetics from a known H.
- Interactions create clusters sequentially.
- Natural & exact description of quantum processes.
- Quantitative predictions for dynamic experiments/applications.

Use quantum spectroscopy, HHG, HSB, collider, BEC interactions:

macroscopic quantum processes

(dropletons, multi BECs, Cooper pairs...)

- semiconductor-organic interface, organics, TMDCs...
- ► PHz electronics, UV/as sources, quantum information....

Clustronics team (since Sept. 2016)

Markus Borsch, excitonics Ben Girodias, quantum & multi-D spectroscopy Peter Hawkins, HHG, HSB Weiwei Jiang, carbon nanotubes Haiyi Liu, HHG, HSB Claire Lu, many-body detection Rachel Wooten, atomic BECs Rodrigo Muniz, clustronics