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Experiments with ultra-cold atoms have put focus
on fundamental questions in guantum dynamics

Can prepare precise initial states and
observe the ensuing unitary dynamics in real-time

Dynamics in optical lattices Quantum integrability
. Bloch group (2012) D. Weiss group (2010)



Questions

What are the genuinely quantum effects in the
dynamics of many quantum particles?

Why does the macroscopic world appear classical?
(How does classical hydrodynamics emerge from unitary
guantum dynamics?)

Can a big system evade a classical/thermal fate?

How to characterize chaos in a many-body quantum system?



Ergodicity in quantum dynamics

Many-body time evolution often
scrambles quantum correlations.
Scrambling = quantum chaos (?)

Quantum information stored in local
objects is rapidly lost as these get

entangled with the rest of the system. N > Y \
-
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The only remaining structures of
Information are slow order parameter

fields and conserved densities. Classical hydrodynamic

description (e.g. diffusion).




Two generic paradigms for closed system dynamics

Thermalization

Quantum correlations in local d.o.f
are rapidly lost as these get
entangled with the rest of the system.
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Classical hydrodynamics
of remaining slow modes.
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Many-body localization
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Local quantum information
persists indefinitely.

¢

Need a fully guantum description
of the long time dynamics!
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The MBL transition constitutes a sharp boundary
between quantum and classical behavior at long times



Outline of this talk

What is MBL? Description of dynamics in the MBL state
A theory of the MBL phase transition.
Confronting theory with experiment

Briefly: a new scheme for computing quantum
thermalization dynamics.



Anderson localization

Single particle (Anderson 1958):
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Vanishing probability of resonances.

Add interactions: U CL cg C~C§
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At high energies interaction connects between ~2% localized states !
Can localization survive ?



Many-Body Localization (MBL)

Basko, Aleiner, Altshuler (BAA) 2005; Gornyi, Mirlin, Polyakov 2005:
Insulating phase stable below a critical T or E; metal above it.

Mathematical proof for quantum spin chains: Imbrie 2014

delocalized
thermalizing

Localized (x =0, o=0)
non ergodic phase

. >
Disorder strength

What can we say about static and dynamic properties of MBL states?



Entanglement entropy growth in time evolution

Znidaric, Prosen and Prelovsek (2008); Bardarson, Pollmann and Moore (2012)
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Compute time evolution starting from a simple state in one dimension:
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Low entanglement allows efficient
encoding and computation.
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MBL phase is a stable RG fixed point

R. Vosk & EA, PRL 2013, 2014
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Serbyn etal. (2013)

Note the analogy with Fermi-liquid theory!
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Effective model of the locaized phase
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Reveals surprisingly rich dynamics in MBL phase:

« Slow log(t) entanglement growth and anomalous relaxation
Vosk and EA (2013), Serbyn (2013), Vasseur et al (2014), Serbyn et. al. (2014)

« Distinct localized phases

(glass, paramagnetic, topological ...) ‘L‘ v
Huse et. al. 2013, Vosk and EA 2014, Pekker et. al. 2014 \ * *'k—-‘* 'y —»
TR B
« Persistent quantum coherence, spin echos \__\j'*’

Bahri, Vosk, EA and Vishwanath 2013, Serbyn etal 2013

« Topologically protected edge states at high energies
Bahri, Vosk, EA and Vishwanath 2013

But cannot address the MBL transition using this approach!



Theory of the transition from MBL to ergodic fluid

Many-body localized Thermalizing
>
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Quantum coherent dynamics “Classical” dynamics
Area law eigenstate entanglement Volume-law eigenst. entanglement
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The many-body localization transition:

1. Sharp interface between quantum and classical worlds

2. Fundamental change in entanglement pattern.
More radical than in any known transition.

R. Vosk, D. A. Huse and EA, PRX 5, 031032 (2015)



Essence of many-body localization

Warm-up: essence of single particle localization (Anderson 58)

= ZV;;CIC?; —WZC;[C]'—FH.C. (ViV5;) :Ag 0
U (ig)
R
W/‘N\ ’N
i \\ s AR //\\\ T W
SRR RAEC BB %
n = Qi At
: |
|
Is there a likely resonance within a range R of site | ?
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Matrix element for hopping to this range: J(R)~W Vs
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Resonance condition J(R) > A(R) satisfied only if Wd > Ag



Essence of many-body localization

Warm-up: essence of single particle localization (Anderson 58)
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Rough criterion for MBL (T=)

H=) V87 +) J*875%+ J°5¢S°
e (25)
Matrix element to move between typical configurations of L spins:
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J(L) ~ J* (J% /Do) = J2e~ H/% —
A(L) ~ % AR : :u{jt/tﬁu:u g% A
Delocalized phase: g(L) > 1

Resonance condition = condition for the system to serve as it's own bath:



Rough criterion for MBL (T=)
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¢ (25)
Matrix element to move between typical configurations of L spins:
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Localized phase: g(L) <1
requires & < 1/In2

Does it mean non-diverging localization length and 15t order transition? NO!



Toy model of the critical point

(Zhang, Zhao, Huse PRB 2016)
We want a thermal system of length L:

g(L)>1

Now consider 3 subsystems of length L/3.

Must they all individually have g(L/3)>>17

No! The minimal configuration should be something like this:

g(L/3) >1

g(L/3) <1

g(L/3) > 1

The thermal sides are then just able to thermalize the middle.

Now apply this reasoning to each of the two thermal sides to get:

And iterate:




Toy model of the critical point

Critical system is a Cantor set of bare thermal regions
with fractal dimension: d; ~1n2/1n3

This should be just enough to thermalize the whole system!

Fluctuation in the tuning parameter (bare disorder)
resulting in a critical bubble 5
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The Idea can be formulated precisely as RG flow
R. Vosk, D. Huse and E.A. arXiv:1412.3117
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Schematics of the RG
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Join blocks which exchange information on the fastest scale.
Then compute renormalized couplings to the left and right.

Computing the flow will tell us whether we end up with one big
thermalizing matrix (g>>1) or a big insulator (g<<1) at large scales



Outcome of the RG flow

I, 915 I3 923 I3, O34 I'ys 945

~critical =

Mg

L ~
0 100 200 300 400 500
L




Outcome of the RG flow
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RG result 1: Dynamical scaling for transport

Relation between transport time 7, and length | of blocks:

[

Diffusion: Ttr = l2 lir = (DT)%Z\

DeB@Iized, but not diffusion
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log(go)=4
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Sub-diffusive behavior in the ergodic phase
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Seen also in numerical studies: Bar-Lev et.al 2014;
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Result of Griffiths effects. long insulating inclusions inside the metal are
exponentially rare but give exponentially large contribution to the transport time.
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RG result - eigenstate entropy
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RG result I — eigenstate entropy
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Direct transition to thermal state



Summary of this part
Many-body localized

Thermalizing
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Quantum coherent dynamics “Classical” dynamics

Area law entanglement Volume law entanglement

*—e—< < —== e
Dynamical RG Random | sub-diffusive diffusive
/ matrix RG
Localized S, broadly
fixed-point distributed
at crit. point

More microscopic description?
Theoretical/numerical approaches for quantum thermalization?



Experimental observation of MBL.:
fermions in a quasi-random optical lattice

Science 349, 842 (2015)

we
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With:
Immanuel Bloch’s group (LMU)
Mark Fischer and Ronen Vosk (WIS)



Quantum quench protocol

1. Fermions in optical lattice prepared in period-2 density
modulation (particles only on even sites)

e
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1. Evolve the state with the 1d lattice Hamiltonian:
HI= e s e kG A ees 2 AP G ek U A i 4.

0 |,0 |
Incommensurate potential J\ o (1)) _im\\P(O»
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Numerics suggest that this model shows generic MBL (lyer et. al. PRB 2013)




What to measure?

Imbalance between even and odd sites (density modulation):
L

To 3 (1Y) = (e

j=1
Incomplete relaxation is direct evidence for ergodicity breaking!

6 U/=4.7(1)
6,0 U/=10.3(1)
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If the system is localized, the density wave operator has finite
overlap with an integral of motion and therefore cannot relax fully.
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Imbalance T

Focus on the relaxation near the MBL transition

Observe critical slowing down on the thermal side of the transition.
Can be interpreted as Griffith physics by fitting power law relaxation (?)
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Bordia et. al (I. Bloch’s group), to be published

Can we compute thermalizing dynamics?
Approach MBL transition controllably from the thermal side?



Can we compute dynamics of a thermalizing system?

Eyal Leviatan, Jens Bardarson, Frank Pollmann, David Huse and EA
arXiv:1702.08894

Problem with DMRG (or MPS) calculation:
linear growth of entanglement entropy
(Flow of quantum info. From local operators to increasingly non-local ones)

Apparent paradox:
We expect to obtain emergent classical dynamics after thermalization
time of order 1, long range entanglement should not matter

e
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“Information paradox”

Bits needed to
encode state

Hydrodynamic regime

Thermal
State

>
Tth L

>




ldea: use the time-dependent variational principle
(TDVP) to compute a thermalizing system

Variational manifold: MPS states with fixed bond dimension
[Haegeman et. al. PRL 2011]
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Variational manifold defines a classical Lagrangian:

Lla,é] = (Pla][10; |Yla]) — (Yla]| H |Pla])

Euler-Lagrange equations generate a 0L 0 0L —

classical trajectory in the variational manifold: da; Ot dd; -



Results: evolution of the local spin

Entanglement growth 351 (a) ' — x:é
(unentangled initial 3.0 — I=§
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Saturation value log x S 1
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Extract energy diffusion constant

H=Y J88,—hi5 —hS;

log(Jt) 007954 8 12 16 20 24 28 32 36 40
X (Bond dimension)

Diffusion coefficient converges to ~5% accuracy for bond dimension > 2.

The method captures the emergent hydrodynamic behavior.
Can it capture the characteristics of quantum chaos?



Computing a diagnostic of chaos

Classical systems: Hoq(t) — Q9 (t)HQ ~ e Lt
S L/2 )
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The perturbation is a single-site unitary applied at the left edge.

tr [(/01 (ajvt) T p2($7t))2}

tr[(or (2, 1) — p5 (2, 1))?]

normalized measure: 6°(x,t)
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Propagation of chaotic front

log [52(x, t)}
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Front propagates balistically, but at the same time broadens diffusively:

OBR= VA DBt

Agrees with a model of random time dependent unitaries
(von Keyserlingk et. al. arXiv:1705.08910 )



Outlook — many open questions

How to develop a controlled approach to the many-body
localization transition?

Emerging understanding of MBL in 1d?
Is there MBL in higher dimensions?

First experiments on MBL and critical slowing down.
How to control dissipation in cold atomic systems ?
Can we observe signatures of MBL in solid state systems?

A new computational approach to capture emergent
hydrodynamics and quantum chaos in 1d.
Higher dimension?



