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Experiments with ultra-cold atoms have put focus 

on fundamental questions in quantum dynamics 

Quantum integrability Dynamics in optical lattices 

Can prepare precise initial  states and  

observe the ensuing unitary dynamics in real-time 

I. Bloch group (2012) D. Weiss group (2010) 



Questions 

• What are the genuinely quantum effects in the  

dynamics of many quantum particles? 

• Why does the macroscopic world appear classical? 

(How does classical hydrodynamics emerge from unitary 

quantum dynamics?) 

• Can a big system evade a classical/thermal fate? 

• How to characterize chaos in a many-body quantum system?  



Ergodicity in quantum dynamics 

Classical hydrodynamic 

description (e.g. diffusion). 

Quantum information stored in local 

objects is rapidly lost as these get 

entangled with the rest of the system. 

The only remaining structures of 

information are slow order parameter 

fields and conserved densities. 

Many-body time evolution often 

scrambles quantum correlations. 

Scrambling = quantum chaos (?)  



Two generic paradigms for closed system dynamics 

Thermalization 

Classical hydrodynamics  

of remaining slow modes. 

Quantum correlations in local d.o.f 

are rapidly lost as these get 

entangled with the rest of the system.  

Many-body localization 

Need a fully quantum description  

of the long time dynamics! 

Local quantum information  

persists indefinitely. 

? 

The MBL transition constitutes a sharp boundary 

between quantum and classical behavior at long times 



Outline of this talk 

 
• What is MBL? Description of dynamics in the MBL state 

 

• A theory of the MBL phase transition. 

 

• Confronting theory with experiment 

 

• Briefly: a new scheme for computing quantum 

thermalization dynamics. 

 

 

 



Anderson localization 

Single particle (Anderson 1958): 

Vanishing probability of resonances.   

At high energies interaction connects between ~2L localized states ! 

Can localization survive ? 

Add interactions: 



Many-Body Localization (MBL) 

Basko, Aleiner, Altshuler (BAA) 2005; Gornyi, Mirlin, Polyakov 2005:  

Insulating phase stable below a critical T or E; metal above it.  

delocalized 

thermalizing 

Localized (k =0, s =0) 

non ergodic phase 

𝑇 = ∞ 

Disorder strength 

T, E 

Mathematical proof for quantum spin chains: Imbrie 2014 

What can we say about static and dynamic properties of MBL states? 



Entanglement entropy growth in time evolution 

Znidaric, Prosen and Prelovsek (2008); Bardarson, Pollmann and Moore (2012) 

SA Saturates to a volume law in a 

finite subsystem but smaller than 

expected thermal entropy 

Slow growth of entanglement entropy. 

Low entanglement allows efficient 

encoding and computation. 

Compute time evolution starting from a simple state in one dimension:  

A B 

Bardarson et. al. (2012) 



MBL phase is a stable RG fixed point 

R. Vosk & EA, PRL 2013, 2014 

• Fixed point characterized by  

complete set of local integrals of motion:  

Note the analogy with Fermi-liquid theory! 

Huse & Oganesyan (2013),  

Serbyn etal. (2013) 



Reveals surprisingly rich dynamics in MBL phase: 

• Slow log(t) entanglement growth and anomalous relaxation 
Vosk and EA (2013), Serbyn (2013), Vasseur et al (2014), Serbyn et. al. (2014) 

• Distinct localized phases  

(glass, paramagnetic, topological …) 
Huse et. al. 2013, Vosk and EA 2014, Pekker et. al. 2014 

• Persistent quantum coherence, spin echos 
Bahri, Vosk, EA and Vishwanath 2013, Serbyn etal 2013 

• Topologically protected edge states at high energies 
Bahri, Vosk, EA and Vishwanath 2013 

But cannot address the MBL transition using this approach!  

Effective model of the locaized phase 



Thermalizing 

Volume-law eigenst. entanglement  

Many-body localized 

Area law eigenstate entanglement 

“Classical” dynamics Quantum coherent dynamics 

Theory of the transition from MBL to ergodic fluid 

? 

R. Vosk, D. A. Huse and EA, PRX 5, 031032 (2015) 

The many-body localization transition: 

1. Sharp interface between quantum and classical worlds 

2. Fundamental change in entanglement pattern.  

More radical than in any known transition. 



Essence of many-body localization 

Warm-up: essence of single particle localization (Anderson 58) 

i i' 

Site nearest in energy within this range: 

Matrix element for hopping to this range: 

Resonance condition J(R) > D(R) satisfied only if 

Is there a likely resonance within a range R of site i ? 

R 



Essence of many-body localization 

i i' 

R 

Can view delocalization as a decay of state i into a continuum:  

Condition for the surrounding states to serve as 

an effective bath:  

Warm-up: essence of single particle localization (Anderson 58) 



Rough criterion for MBL  (T=∞) 

Matrix element to move between typical configurations of L spins: 

Resonance condition = condition for the system to serve as it’s own bath: 

Delocalized phase: 



Rough criterion for MBL  (T=∞)  

Matrix element to move between typical configurations of L spins: 

Does it mean non-diverging localization length and 1st order transition? NO! 

requires 

Localized phase: 



Toy model of the critical point 

Must they all individually have g(L/3)>>1?  

We want a thermal system of length L:  

The thermal sides are then just able to thermalize the middle. 

Now apply this reasoning to each of the two thermal sides to get: 

And iterate: 

Now consider 3 subsystems of length L/3.  

No! The minimal configuration should be something like this: 

(Zhang, Zhao, Huse PRB 2016) 



Toy model of the critical point 

Critical system is a Cantor set of bare thermal regions  

with fractal dimension: 

This should be just enough to thermalize the whole system!  

Fluctuation in the tuning parameter (bare disorder)  

resulting in a critical bubble  



The Idea can be formulated precisely as RG flow 
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R. Vosk, D. Huse and E.A. arXiv:1412.3117 



Schematics of the RG  
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Join blocks which exchange information on the fastest scale. 

Then compute renormalized couplings to the left and right. 

Computing the flow will tell us whether we end up with one big 

thermalizing matrix (g>>1) or a big insulator (g<<1) at large scales  



Outcome of the RG flow 

1

1g
2

2g
3

3g

4

4g

5

5g

12 12g
23 23g

34 34g 45 45g

-2 

~critical 

L 



Outcome of the RG flow 

1

1g
2

2g
3

3g

4

4g

5

5g

12 12g
23 23g

34 34g 45 45g



RG result 1: Dynamical scaling for transport 

Relation between transport time ttr  and length l of blocks: 

Diffusion: 

Delocalized, but not diffusion 



Sub-diffusive behavior in the ergodic phase 

Seen also in numerical studies:  Bar-Lev et.al 2014; Agarwal et.al 2014 

(bare coupling) 
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Result of Griffiths effects. long insulating inclusions inside the metal are 

exponentially rare but give exponentially large contribution to the transport time.  

Relaxation with slow power-law tails 



RG result - eigenstate entropy 



RG result II – eigenstate entropy 

• Universal jump to full thermal entropy       Direct transition to thermal state 

perfect data  

collapse!  

Near critical point expect 

distribution of S to scale:  

In particular all moments: 



Thermalizing 

Volume law entanglement  

Many-body localized 

Area law entanglement 

“Classical” dynamics Quantum coherent dynamics 

Localized 

fixed-point 

Dynamical RG Random 

matrix RG 

SA broadly  

distributed 

at crit. point 

diffusive sub-diffusive 

Summary of this part 



Experimental observation of MBL: 

fermions in a quasi-random optical lattice 

With:  

Immanuel Bloch’s group (LMU) 

Mark Fischer and Ronen Vosk (WIS) 

e e e e e o o o o 

Science 349, 842 (2015)   



Quantum quench protocol 

1. Fermions in optical lattice prepared in period-2 density 

modulation (particles only on even sites) 

 

 

 

 

1. Evolve the state with the 1d lattice Hamiltonian: 

e e e e e o o o o 

classical physics.

While Anderson localization of non-interacting particles has been

experimentally observed in a range of systems, including light scatter-

ing from semiconductor powders in 3D [31, 32, 33], photonic lattices in

1D [34] and 2D [35] and cold atoms in random [36] and quasi-random

[37] disorder, theinteracting casehasprovenmoreelusive. Initial exper-

iments with interacting systems have focused on thesuperfluid [38, 40]

or metal [39] to insulator transition in theground state. Evidence for in-

hibited macroscopic mass transport was reported even at elevated tem-

peratures[39], but ishard to distinguish from exponentially slow motion

expected from conventional activated transport or effectsstemming from

the inhomogeneity of the cloud. A conclusive indication of many-body

localization at finiteenergy density isstill lacking.

In this paper we report the first experimental observation of ergod-

icity breaking due to many-body localization. Our experiments are

performed in a one-dimensional system of ultracold fermions in a bi-

chromatic, quasi-random lattice potential. We identify the many-body

localized phase by monitoring the time evolution of local observables

following a quench of system parameters. Specifically, we prepare a

high-energy initial state with strong charge density wave (CDW) order

(as shown in Fig. 1A) and measure the relaxation of this charge density

wave in the ensuing unitary evolution. Our main observable is the im-

balance I between the respective atom numbers on even (Ne) and odd

(No) sites

I =
Ne − No

Ne + No

, (1)

which directly measures the CDW order. While the CDW will quickly

relax to zero in the thermalizing case, this isnot true in a localized sys-

tem, where ergodicity is broken and the system cannot act as its own

heat bath (Fig. 1B) [41]. Intuitively, if the system is strongly localized,

all particles will stay close to their original positions during timeevolu-

tion, thusonly smearing out theCDW little. A longer localization length

will lead to a lower saturation value of the CDW. The stationary value

of the CDW thus effectively serves as an order parameter of the MBL

phaseand allowsusto map thephaseboundary between theergodic and

non-ergodic phases in theparameter spaceof interaction versusdisorder

strength. In particular, if the localization length becomes large com-

pared to the lattice constant, then the CDW vanishes as I / 1/⇠2 [43].

In contrast to previousexperiments, which studied theeffect of disorder

on the global expansion dynamics [36, 37, 38, 39, 40], the CDW order

parameter acts as a purely local probe, directly captures the ergodicity

breaking and is insensitive to effectsstemming from theglobal inhomo-

geneity of the trapped system.

Our system can be described by the one-dimensional fermionic

Aubry-André model [42] with interactions [41], given by the Hamil-

tonian

Ĥ = − J
X

i ,σ

⇣
ĉ
†
i ,σ ĉi + 1,σ + h.c.

⌘

+ ∆
X

i ,σ

cos(2⇡βi + φ)ĉ
†
i ,σ ĉi ,σ + U

X

i

n̂ i , " n̂ i ,# .
(2)

Here, J isthetunneling matrix element betweenneighboring latticesites

and ĉ
†
i ,σ (ĉi ,σ ) denotes thecreation (annihilation) operator for afermion

in spin stateσ 2 { " , #} on site i . The second term describes the quasi-

random disorder, i.e. the shift of the on-site energy due to an additional

incommensurate lattice, with theratio of latticeperiodicitiesβ, disorder

strength ∆ and phase offset φ. Lastly, U represents the on-site interac-

tion energy and n̂ i ,σ = ĉ
†
i ,σ ĉi ,σ is the local number operator (see Fig.

1C).
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Figure 2: Time evolution of an initial charge-density wave. A charge density

wave, consisting of aFermi gaswith atomsonly occupying even sites, isallowed

to evolve in a lattice with an additional quasi-random disorder potential for vari-

able times, after which the relative imbalance I between atoms on odd and even

sites ismeasured. Experimental time traces (circles) and DMRG calculations for

a homogeneous system (lines) are shown for various disorder strengths ∆ . The

evolution time is given in units of the tunneling time. Each datapoint denotes

theaverageof six different realizationsof thedisorder potential and theerrorbars

show the standard deviation. The shaded region indicates the time window used

to characterise thestationary imbalance in therest of theanalysis.
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Figure 3: Stationary values of the imbalance I as a function of disorder ∆ for

non-interacting atoms, with theAubry-André transition around ∆ = 2. To avoid

any interaction effects, only asingle spin component wasused. Circles show the

experimental data, along with exact diagonalization (ED) calculations including

trap effects (red line) and, additionally, lattice inhomogeneity (grey shaded area).

The inset shows experimental time traces (circles) for non-interacting atoms, as

in Fig. 2, plus ED results incorporating trap effects and lattice inhomogeneity

(shaded regions).

This quasi-random model is special in that, for certain classes of

irrational β [43, 44], aboveacritical disorder strength ∆ / J = 2 all sin-

gle particle states become localized [42] and the now finite localization

length decreasesmonotonically for stronger disorders. Such atransition

was indeed observed experimentally in a non-interacting bosonic gas

[37]. In contrast, truly random disorder will lead to single-particle lo-

calization in onedimension for arbitrarily small disorder strengths. Pre-

viousnumerical work indicatesmany-body localization inquasi-random

systems to be similar to that obtained for a truly random potential [41].

Localization persists for all interaction strengths–even thoselarger than

2
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on the global expansion dynamics [36, 37, 38, 39, 40], the CDW order

parameter acts as a purely local probe, directly captures the ergodicity
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†
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tion energy and n̂ i ,σ = ĉ
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theaverageof six different realizationsof thedisorder potential and theerrorbars

show the standard deviation. The shaded region indicates the time window used

to characterise thestationary imbalance in therest of theanalysis.
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any interaction effects, only asingle spin component wasused. Circles show the

experimental data, along with exact diagonalization (ED) calculations including

trap effects (red line) and, additionally, lattice inhomogeneity (grey shaded area).

The inset shows experimental time traces (circles) for non-interacting atoms, as

in Fig. 2, plus ED results incorporating trap effects and lattice inhomogeneity

(shaded regions).

This quasi-random model is special in that, for certain classes of

irrational β [43, 44], aboveacritical disorder strength ∆ / J = 2 all sin-

gle particle states become localized [42] and the now finite localization

length decreasesmonotonically for stronger disorders. Such atransition

was indeed observed experimentally in a non-interacting bosonic gas

[37]. In contrast, truly random disorder will lead to single-particle lo-

calization in onedimension for arbitrarily small disorder strengths. Pre-

viousnumerical work indicatesmany-body localization inquasi-random

systems to be similar to that obtained for a truly random potential [41].

Localization persists for all interaction strengths–even thoselarger than

2

Incommensurate potential 

J 
U 

D 

Numerics suggest that this model shows generic MBL (Iyer et. al. PRB 2013) 



What to measure? 

Imbalance between even and odd sites (density modulation): 

If the system is localized, the density wave operator has finite 

overlap with an integral of motion and therefore cannot relax fully. 

Incomplete relaxation is direct evidence for ergodicity breaking!  



Phase diagram 

Regime with many-

body  mobility edge 

no doublons 

with doublons 



Focus on the relaxation near the MBL transition 

Bordia et. al (I. Bloch’s group), to be published 

Observe critical slowing down on the thermal side of the transition. 

Can be interpreted as Griffith physics by fitting power law relaxation (?)   

Can we compute thermalizing dynamics?  

Approach MBL transition controllably from the thermal side? 



Can we compute dynamics of a thermalizing system? 

Problem with DMRG (or MPS) calculation:   
linear growth of entanglement entropy 

(Flow of quantum info. From local operators to increasingly non-local ones)  

Apparent paradox: 
We expect to obtain emergent classical dynamics after thermalization 

time of order 1, long range entanglement should not matter 

Eyal Leviatan, Jens Bardarson, Frank Pollmann, David Huse and EA 

arXiv:1702.08894  



“Information paradox” 

Hydrodynamic regime 

Bits needed to 

encode state 

Thermal 

state 



Idea: use the time-dependent variational principle 

(TDVP) to compute a thermalizing system 

Variational manifold: MPS states with fixed bond dimension 

[Haegeman et. al. PRL 2011] 

Variational manifold defines a classical Lagrangian: 

Euler-Lagrange equations generate a 

classical trajectory in the variational manifold:  



Results: evolution of the local spin 

Entanglement growth 

(unentangled initial 

states) 

Saturation value 

depends on bond dim. 

Relaxation of the perturbed spin 

(same initial conditions) 

Obtain hydrodynamic tail. 

Almost independent of c 



Extract energy diffusion constant 

Diffusion coefficient converges to ~5% accuracy for bond dimension > 2.  
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(Bond dimension) 

The method captures the emergent hydrodynamic behavior. 

Can it capture the characteristics of quantum chaos? 



Computing a diagnostic of chaos 

The perturbation is a single-site unitary applied at the left edge. 

normalized measure: 

Classical systems: 



Propagation of chaotic front 

Jt=10 

Jt=130 

Front propagates balistically, but at the same time broadens diffusively: 

Agrees with a model of random time dependent unitaries 

(von Keyserlingk et. al. arXiv:1705.08910 ) 



Outlook – many open questions 

• How to develop a controlled approach to the many-body 

localization transition?   

 

• Emerging understanding of MBL in 1d?  

Is there MBL in higher dimensions? 

 

• First experiments on MBL and critical slowing down.  

How to control dissipation in cold atomic systems ?  

Can we observe signatures of MBL in solid state systems? 

 

• A new computational approach to capture emergent 

hydrodynamics and quantum chaos in 1d.  

Higher dimension? 


