Physics and Chemistry with Diatomic Molecules Near Absolute Zero

Tanya Zelevinsky & ZLab

Columbia University, New York
Pupin Labs @ Columbia
What is Ultracold?

- Laser cooling of atoms
Beyond Cold Atoms

Indirect molecule cooling

Direct molecule cooling

buffer gas (sympathetic) cooling

laser cooling

bond formation

optical or magnetic
Why Cold Molecules?

atomic H spectrum

molecular H\textsubscript{2} spectrum

<table>
<thead>
<tr>
<th>New science</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum-state-controlled ultracold chemistry</td>
<td>⭐</td>
</tr>
<tr>
<td>Dipolar quantum gases & many-body physics</td>
<td></td>
</tr>
<tr>
<td>Enhancement of EDMs and parity violation</td>
<td>⭐</td>
</tr>
<tr>
<td>New physics and “5th force”</td>
<td></td>
</tr>
<tr>
<td>Fundamental constants & variations</td>
<td></td>
</tr>
</tbody>
</table>
Ultracold Diatomic Molecules

Indirect molecule cooling

10^{-6} K

200 m/s \rightarrow 10 mm/s

No energy release
Tight Trapping: Optical Lattice Clocks

10^{-6} K

create Sr_2 molecules

standing wave of light

quantized motional states

trapping potential: ac Stark shift
Molecular Lattice Clock

G. Reinaudi et al., PRL 109, 115303 (2012)
Science with Cold and Ultracold Molecules

- Ultracold chemistry
- Molecular clocks
- Table-top particle physics
Ultracold Chemistry

Quantum-state selected reactants and products

Bimolecular collisions

\[AB + AB \rightarrow A_2 + B_2 \]

Photoassociation

\[A + A + \gamma \rightarrow A_2^* \]

Photodissociation

\[A_2 + \gamma \rightarrow A + A^* \]
Ultracold Chemistry

Quantum-state selected reactants and products

Complete quantum state control of “reverse collision”

Photodissociation

$A_2 + \gamma \rightarrow A + A^*$
Ultracold Chemistry

Quantum-state selected reactants and products

Photodissociation

\[\text{Sr}_2 + \gamma \rightarrow \text{Sr} + \text{Sr}^* \]

The “hydrogen atom” of ultracold chemistry

• Experiment → first-principles theory → comparison
Ultracold Photodissociation

Photofragment angular distribution

\[J = 0, J = 2 \] \[(J = 4; M = \pm 1) \]

Matter-wave interference \(\rightarrow \) \(\phi \) dependence!
Photofragment Angular Distributions

\[|\Omega_i| = 1 \]

\[m_i \]

\begin{array}{cccc}
0 & 1 & 2 & 3 & 4 \\
4 & & & & \\
3 & & & & \\
2 & & & & \\
1 & & & & \\
0 & & & & \\
\end{array}

\[|\Omega_i| = 0 \]

\[m_i \]

\begin{array}{cccc}
0 & 1 & 2 & 3 \\
3 & & & & \\
2 & & & & \\
1 & & & & \\
0 & & & & \\
\end{array}

M. McDonald et al., Nature 535, 122 (2016)
Photofragment Angular Distributions

$|\Omega_i| = 1$

$|Y^1_4 + e^{i\delta}Y^3_4|^2$

M. McDonald et al., Nature 535, 122 (2016)
Probing Reaction Barriers

\[\text{Quantum tunneling?} \]

\[|\Omega| = 1 \]

\[|\Omega| = 0 \]

\[^1S + ^3P_1 \]
Probing Reaction Barriers

Continuum ($J = 1$)

$^1S + ^3P_1$
Probing Reaction Barriers

$I(\theta) \propto 1 + \beta_2 P_2(\cos \theta)$

Continuum energy (MHz)
Probing Reaction Barriers

Continuum energy (MHz)

$I(\theta) \propto 1 + \beta_2 P_2(\cos \theta)$
Field Control of Photodissociation

Comparable energies at ~ 1 mK:

- Kinetic
- Barrier
- Zeeman
Field Control of Photodissociation

Comparable energies at ~ 1 mK:

- Kinetic
- Barrier
- Zeeman

M. McDonald et al., PRL, accepted
Field Control of Photodissociation

\[\text{Sr}_2 + \gamma \rightarrow \text{Sr} + \text{Sr}^* \]

Energy = 30 MHz = 1.5 mK

Key point: Mixing of partial waves in the continuum

M. McDonald et al., PRL, accepted
Science with Cold and Ultracold Molecules

- Ultracold chemistry
- Molecular clocks
- Table-top particle physics
Clocks

Electronic

Vibrational

Coherence time of $|1\rangle + |2\rangle$ superposition

- Intrinsic
- Trap & environment
Two-Body Quantum Optics

Identical nuclei → Inversion symmetry

superradiant
\[|S\rangle |P\rangle + |P\rangle |S\rangle \]

subradiant
\[|S\rangle |P\rangle - |P\rangle |S\rangle \]

odd \((u)\)

\[E_1 \]

\[2\Gamma \]

even \((g)\)

\[M_1 \]

\[E_2 \]

\[\neq 0! \]
Two-Body Quantum Optics

Subradiance

\[\left(\frac{\mu_{M1}}{\mu_{E1}} \right)^2 \approx \left(\frac{R}{\lambda} \right)^2 \approx 10^{-4} \]

@ \(R = 100 \ a_0 \)

Need \(10^4 \times \) suppression of E1!

→ Molecules ✓

Two-Body Subradiance

$H_{int} = -d \cdot E$

$E1$

Ψ_e

Ψ_0

u

g

$M1$

$E2$

$-\mu \cdot B$

$-\frac{1}{6} Q_{ij} \nabla_i E_j$

Normalized strength

R

ν' -1 -1

ν -1 -2

Theory

Expt.
Subradiant Lifetime

Two-Body Subradiance

Two-body subradiance

Predissociation $\propto \Delta E$

$\propto R^{-4}$

van der Waals $\propto R^{-2.5}$

dipole-dipole

$Q > 3 \times 10^{12}$

$\propto R^2$

Natural linewidth (Hz)

Bond length (R/a_0)
Trap-Insensitive Spectroscopy

“Magic” optical lattice trap

create molecules

optical probe

Equal light-induced frequency shifts!

10^{-6} K
Trap-Insensitive Spectroscopy

“Magic” optical lattice trap

Coherent superposition of $|1\rangle + |2\rangle$
Trap-Insensitive Spectroscopy

‘Magic’-lattice optical absorption spectrum

red sideband carrier blue sideband

\[\frac{\alpha'}{\alpha} = 0.98(2) \]
Trap-Insensitive Spectroscopy

\[\frac{\alpha'}{\alpha} = 0.98(2) \]

\[\frac{\alpha'}{\alpha} = 0.889(2) \]

\[2\nu_x \]
Trap-Insensitive Spectroscopy

“Magic” optical lattice trap

Nonresonant crossing:
Traditional choice; hard to find 😞

Resonant crossing:
Heating/loss

Resonant crossing:
* No heating/loss!
* Easy to find 😊

Lattice wavelength
Dynamic polarizability

>100 nm
Clock Based on Molecular Vibrations

<30 THz
Trap-Insensitive Spectroscopy

“Magic” optical lattice trap

Resonant crossing:
* No heating/loss!
* Easy to find

Lattice frequency (THz)

Lattice wavelength

Dynamic polarizability

narrow resonance

0.006 nm
Trap-Insensitive Spectroscopy

“Magic” optical lattice trap

- Line width (MHz): $600 \times$ coherence time
- 160 Hz
Trap-Insensitive Spectroscopy

“Magic” optical lattice trap

Lattice frequency (THz)

160 Hz

vibrational “clock” resonance

26 THz

Q = 2×10^{11}
(fiber limited)
Science with Cold and Ultracold Molecules

- Ultracold chemistry
- Molecular clocks
- Table-top particle physics
New Mass-Dependent Forces

\[V = -\frac{GM^2}{r} \left(1 + Ae^{-r/\lambda}\right) \]

Yukawa

\[A < 10^{21} \]

@ 1 nm!

→ Need state-of-the-art measurement of van der Waals interatomic force

M. Borkowski et al., arXiv:1612.03842
Molecular QED and 5th force

Born-Oppenheimer approximation

\[E_{\text{tot}} \approx E_{\text{el}} + E_{\text{vib}} + E_{\text{rot}} \]

Beyond B-O

- adiabatic
- nonadiabatic
- relativistic
- finite-nuclear-size

\[\mu = \frac{m_e}{A m_p} \]

\[\mu^2, \alpha^2 \mu, \alpha^3 \mu \]

\[(r_c/a_0)^2 \]

higher-order \(\alpha^4 \mu < 1 \text{ Hz} \)

\(^{84}\text{Sr}, \; ^{86}\text{Sr}, \; ^{88}\text{Sr} \) dimers (6 combinations): fit up to 5 \(\mu \)-dependent corrections
Molecular QED and 5th Force

Neutron scattering 2006

Strength of non-1/r2 interaction

\[
\log |A| = \log \left(\frac{l}{m} \right)
\]

Van der Waals forces:

1-Hz Sr\textsubscript{2} spectroscopy projection

Casimir forces
Zlab

Current support:
Columbia University, NSF, ONR, AFOSR, Templeton Foundation, Heising-Simons Foundation

Theory:

Robert Moszynski
Iwona Majewska
U. of Warsaw

Stan Kondov
Paul P.
Geoff Iwata

Alex S.
Konrad Wenz

Rees McNally
Chih-Hsi Lee

Kon Leung
T. Z.

Mickey McDonald: APS DAMOP Doctoral Thesis Prize 2017