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Electron hydrodynamics



Could it finally be true?

?



Electric conduction versus water flow

Water

• Resistance arises through 
internal scattering (viscosity)

Metal

• Resistance arises through 
external scattering  due to 
the lattice (impurities, 
phonons,…)



Outline

• Electron hydrodynamics – What and why?
• Viscous Fermi liquids
• Using magnetic fields to detect viscous effects
• Conclusion and outlook
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“More is different” [Anderson ‘72]

…

SuperconductorsSpin liquids Topological phases



Conventional metallic transport [Drude 1900]

Mean free time of 
electrons, set by 
defects and vibrations 
of the lattice
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Hydrodynamics
• Universal description of fluids based on conserved quantities: 

momentum, energy, charge,…
• Works at length/time scales much larger than the microscopic 

ones

l

V (x)

� � l

mean free path (internal scattering)

Wavelength of 
perturbation



Viscous fluid description based on momentum conservation

Hydrodynamics

l

W

~v1 + ~v2 = ~v01 + ~v02

Microscopics
External force : ~f

@t~v + ~v ·r~v = ⌘r2~v +
~f

m

Navier-Stokes
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Can quantum mechanics constrain hydrodynamics?

…

@t~v + ~v ·r~v = ⌘r2~v +
~f

m

Classically Quantum mechanically

Conjectured fundamental bound based on holography.

⌘

s
� ~

4⇡kB
[Kovtun, Son, Starinets, PRL 2005]

Viscosity can take any value
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Can quantum mechanics enrich hydrodynamics? 

Topological effects:
Berry phase, Hall 
viscosity,…

Relativistic fluids: 
graphene, Weyl
semimetals,…

H =
P

2

2m
For electrons in a solid: H(k) (k) = E(k) (k)
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Hydrodynamic flow of electrons possible if…
lMC ⌧ W ⌧ lMR

Sample size

W

Momentum-relaxing mean free 
path (“external scattering”):
• Impurities
• Phonons

Momentum-conserving mean 
free path (“internal scattering”):
• e-e scattering 

[Gurzhi 1963] [Spivak, Kivelson 2006] [Hruska, Spivak 2011] [Andreev Kivelson Spivak 2011] 
[Torre,Tomadin,Geim,Spivak 2011] [Levitov Falkovich 2016] many more papers...

~v1 + ~v2 = ~v01 + ~v02 ~v 6= ~v0



Which materials?

Bandurin et al, Science 351, 
1055-1058 (2016)

lMC ⌧ W ⌧ lMR

Strong interactions, 
not too low T

Clean samples, 
not too high T

~ 1um ~ 100 um~ 10 um

Mesoscopic samples

• 2D electron gases [de Jong, Molenkamp] (1994)
• PdCoO2 (high mobility layered metal) (2016)
• Graphene [Bandurin et al] [Crossno et al] (2016)



Ohmic

Viscous

Diffuse-Ballistic

lMC ⌧ W ⌧ lMR

W ⌧ lMR, lMC

lMR, lMC ⌧ W

Three regimes

W

lMR

lMC

“Knudsen flow”



Viscous fluid

Hydrodynamics

l

W

~v1 + ~v2 = ~v01 + ~v02

Microscopics
External force : ~f

@t~v + ~v ·r~v = ⌘r2~v +
~f

m

Navier-Stokes



Viscous electronic fluid

Hydrodynamics

l

W

~v1 + ~v2 = ~v01 + ~v02

Microscopics
~v 6= ~v0

External field: ~E

~j = ne~v

@t~v + ~v ·r~v = ⌘r2~v � 1

⌧MR
~v +

e ~E

m



Two regimes

OhmicViscous

~j = ne~v

~j = � ~E

� =
ne2

m
⌧MR

Non-local 
relation 
between 
current and 
electric field!

@t~v = ⌘r2~v � 1

⌧MR
~v +

e ~E

m

⌘r2~j = �e2n

m
~E

If term 
dominates

If t
erm

 

dominates

r⇥~j 6= 0 r⇥~j = 0

⇢ =
m

e2n
⌘
12

W 2
⇢ =

m

e2n

1

⌧MR



Where did the convection term go?
@t~v + ~v ·r~v = ⌘r2~v � 1

⌧MR
~v +

e ~E

m

Re =
~v ·r~v

⌘r2~v

Today:



Outline

• Electron hydrodynamics – What and why?
• Electron hydrodynamics in good metals

• Conclusion and outlook



How to identify hydro effects?

• Idea: Look at finite size corrections to transport coefficients
• Problem: how to distinguish from ballistic effects?
• Solution: use magnetic field 

[TS et al, PRL ‘17]

300 μm

W



Navier-Stokes under magnetic field

@t~v = ⌘xxr2~v � 1

⌧MR
~v +

e

m
~E

@t~v = ⌘xxr2~v � 1

⌧MR
~v +

e

m
( ~E + ~v ⇥ ~B) + ⌘xyr2~v ⇥ ẑ

Add B field

Lorentz force Hall viscosity



A tale of two viscosities

Shear viscosity Hall viscosity

@t~v = ⌘xxr2~v � 1

⌧MR
~v +

e

m
( ~E + ~v ⇥ ~B) + ⌘xyr2~v ⇥ ẑ

Probed by ⇢xx ⇢xyProbed by 
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Hydrodynamic solution

@t~v = ⌘xxr2~v + ⌘xyr2~v ⇥ ~z +
e

m
( ~E + ~v ⇥ ~B)� 1

⌧MR
~v

⇢bulkxx =
m

e2n

1

⌧MR

⇢xx ' ⇢bulkxx +
m

e2n
⌘xx

12

W 2

⌘xx(B) ⇠ ⌘xx(B = 0)
1

1 + (B/B0)
2

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7

⇢xx
⇢bulkxx

B/B0

[TS et al, PRL ‘17]

W "

Result from Boltzmann theory for a charged Fermi liquid:



Navier-Stokes is not enough

lMC ⌧ W ⌧ lMR

lMC . W . lMR Kinetic theory

Navier-Stokes
In theory:

In practice:

@tf + ~v ·r~rf +
e

m
( ~E + ~v ⇥ ~B) ·r~vf = � 1

⌧MR
f � 1

⌧MC
I[f ]



Results of Boltzmann-hydro: magnetoresistance
lMC ⌧ W ⌧ lMR

/ B
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Measurement of shear viscosity in graphene

[Bandurin et al Science (2016)] [Berdyugin et al, Science 2018]

x Electrons in 
graphene at 
T=200K
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A tale of two viscosities

Shear viscosity Hall viscosity

@t~v = ⌘xxr2~v � 1

⌧MR
~v +

e

m
( ~E + ~v ⇥ ~B) + ⌘xyr2~v ⇥ ẑ

Probed by ⇢xx ⇢xyProbed by 



Historical perspective on Hall effect
Classical Hall Effect [Hall 1879] Quantum Hall Effect [von Klitzing 1980]

Classical Viscous Hall Effect Quantum Viscous Hall Effect

�xy

B

�xy = ⌫
e2

h

B

⌘xy ⌘xy = ⌫n
~
4



Hall resistivity => Hall viscosity W

Hall viscosity can be measured by looking at finite-size 
effects in Hall resistivity

⇢bulkxy =
B

ne

[TS et al, PRL ‘17]



Science 2018

B

⌘xy



Last part of the talk: local properties

• So far we’ve only discussed quantities that are averaged over the 
cross section of the channel
• What about their spatial dependence? Any smoking gun features of 

hydro?
• Naïvely, yes:

Ohmic Hydro



Last part of the talk: local properties

• So far we’ve only discussed quantities that are averaged over the 
cross section of the channel
• What about their spatial dependence? Any smoking gun features of 

hydro?
• Naïvely, yes:

Ohmic Hydro Ballistic

But:



Magnetic fields are useful again:

Ballistic Hydro

Current 
density
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Magnetic fields are useful again:

Ballistic Hydro

Current 
density

Hall electric 
field



“Phase diagram” based on profile curvature 

Hall electric field Current





First visualization of hydrodynamic flow of electrons

[J.A. Sulpizio1†, L. Ella1†, A. Rozen1†, J. 
Birkbeck2,3, D.J. Perello2,3, D. Dutta1, M. Ben-
Shalom2,3,4, T. Taniguchi5, K. Watanabe5, T. 
Holder1, R. Queiroz1, A. Stern1, TS, A.K. 
Geim2,3, and S. Ilani, arXiv:1905.11662, to 
appear in Nature (2019) ]

Single-electron transistor
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Reynolds number?

Re =
vdriftW

⌘
 vdrift

vF
⇥ le�imp

lee
⌧ 1

@t~v + ~v ·r~v = ⌘r2~v � 1

⌧MR
~v +

e ~E

m



Bound on viscosity

• Three arguments
• Class of strongly interacting QFTs with 

gravity dual saturate this bound

• Empirical evidence:

• Extrapolation of kinetic theory

[Kovtun, Son, Starinets, PRL 2005]

⌘
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� 1

4⇡

~
kB



Bound on viscosity
[Kovtun, Son, Starinets, PRL 2005]

s ⇠ kBn

⌘ ⇠ nmvl p = mv ⇠ ~
ldB

⌘

s
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kB
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Classical

Quantum

Bound on viscosity ⌘
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