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QCD – the theory of strong interactions
Hadrons: protons, neutrons, π-ons, resonances, strange hadrons, etc.
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QCD – the theory of strong interactions
Hadrons: protons, neutrons, π-ons, resonances, strange hadrons, etc.

FLAVOR: Flavor symmetry (e.g., p and n, or π0 and π+).
“Periodic table” of hadrons from a small number of quarks – u, d, s, . . .
(only 6 flavors are needed for all known hadrons, and only 2 are needed for
p ∼ uud, n ∼ udd, π ∼ q̄q).
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“Periodic table” of hadrons from a small number of quarks – u, d, s, . . .
(only 6 flavors are needed for all known hadrons, and only 2 are needed for
p ∼ uud, n ∼ udd, π ∼ q̄q).
COLOR: Each quark should be able to take on one of 3 “colors”.
Changing flavor of quarks (e.g., u → d) gives another hadron. But
changing color has no observable consequence
(“hidden” symmetry). Why? quark
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Hadrons: protons, neutrons, π-ons, resonances, strange hadrons, etc.
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“Periodic table” of hadrons from a small number of quarks – u, d, s, . . .
(only 6 flavors are needed for all known hadrons, and only 2 are needed for
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COLOR: Each quark should be able to take on one of 3 “colors”.
Changing flavor of quarks (e.g., u → d) gives another hadron. But
changing color has no observable consequence
(“hidden” symmetry). Why? quark

COLOR
FLAVOR
SPIN

PARTONS Deep-inelastic (e.g., e + p) scattering: shows proton has a simple
structure — pointlike constituents, which do not “feel” each other. Quarks?
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(only 6 flavors are needed for all known hadrons, and only 2 are needed for
p ∼ uud, n ∼ udd, π ∼ q̄q).
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Changing flavor of quarks (e.g., u → d) gives another hadron. But
changing color has no observable consequence
(“hidden” symmetry). Why? quark

COLOR
FLAVOR
SPIN

PARTONS Deep-inelastic (e.g., e + p) scattering: shows proton has a simple
structure — pointlike constituents, which do not “feel” each other. Quarks?

What force holds quarks together in hadrons? It weakens if the interaction is
brief or if quarks are close to each other (r � Rproton ∼ 10−13 cm ≡ 1 fermi).

αstrong(r) =
Fr2

~c

r→0→ 0

Compare to E.M.: α = 1/137 (and only grows as r → 0).
In contrast αstrong(1fermi) ∼ 1 and → 0 as r → 0.
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PARTONS Deep-inelastic (e.g., e + p) scattering: shows proton has a simple
structure — pointlike constituents, which do not “feel” each other. Quarks?

What force holds quarks together in hadrons? It weakens if the interaction is
brief or if quarks are close to each other (r � Rproton ∼ 10−13 cm ≡ 1 fermi).

αstrong(r) =
Fr2

~c

r→0→ 0 ASYMPTOTIC FREEDOM

Compare to E.M.: α = 1/137 (and only grows as r → 0).
In contrast αstrong(1fermi) ∼ 1 and → 0 as r → 0.
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QCD – asymptotically free field theory

Only one such class of theories: Non-abelian gauge theories. (QED is
abelian gauge theory.)

Bonus: it involves a hidden symmetry (in QED – U(1) – phase rotation).
In QCD it is the color symmetry – SU(3).

QCD is a quantum field theory:

S =

∫

d4x





Nf
∑

f=1

q̄f

(

i/∂ + g /A − mf

)

qf − 1

2
Tr FµνF µν



 ;

Predictive power
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QCD thermodynamics
Applications:

Neutron stars (large density, low T )
Heavy-ion collisions (large T , large density)

QCD allows first principle calculations
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QCD thermodynamics
Applications:

Neutron stars (large density, low T )
Heavy-ion collisions (large T , large density)

QCD allows first principle calculations

Questions: phases, phase diagram, as function of T , µB , . . .

Early expectations ⇒

Natural scale:

kT ∼ ~c

1fm2
= 0.2 GeV.

(T ∼ 1012K)

or

ρB ∼ 1fm−3.

, GeVµB

T

0 1

QGP

0.1

, GeV

quark matter

dilute hadron gas

vacuum

Asymptotic freedom

r ∼ 1/T → 0

r ∼ 1/µ → 0

(Fermi gas)

U/K ∼ αs � 1

K ∼ T

K ∼ µ

U ∼ αs/r
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Role of chiral symmetry (mq = 0)

q ≡
(

u

d

)

Chiral:
(

uL

dL

)

→ e+iα·τ

(

uL

dL

)

,
(

uR

dR

)

→ e−iα·τ

(

uR

dR

)
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Role of chiral symmetry (mq = 0)
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→ e−iα·τ

(
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dR

)

Order parameter:
〈q̄q〉 = 〈q†LqR + h.c.〉

non-zero in one phase (in vacuum),

exactly zero in another phase — protected by sym-
metry!

Compare ferromagnet : for T < Tc 〈M〉 6= 0, while for T > Tc 〈M〉 = 0.
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Order parameter:
〈q̄q〉 = 〈q†LqR + h.c.〉

non-zero in one phase (in vacuum),

exactly zero in another phase — protected by sym-
metry!

Compare ferromagnet : for T < Tc 〈M〉 6= 0, while for T > Tc 〈M〉 = 0.
This requires singularity ≡ phase transition
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mq 6= 0

Compare ferromagnet
at H 6= 0:
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mq 6= 0

Compare ferromagnet
at H 6= 0:

<M>

TTc

H = 0

H = 0

no phase transition, but
crossover

T, GeV

, GeV10

nuclear
mattervacuum

hot QGP

µB

0.1

cold quark matter

qm   = 0

cr. point
crossover

Why all phases (can be) connected? Because @ order parameters:
no chiral symmetry (mq 6= 0);
. . .
No phase boundary does not mean same physics, of course – (compare
water-vapor, gas-plasma, . . . ) Critical point in many liquids – critical
opalescence

Phase Diagram of QCD – p.7/16



mq 6= 0
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Large µ, color superconductivity and CFL

Asymptotic freedom ⇒ αs(µ) → 0.

Quarks of “different color” (color antisymmetric
state) attract. Fermi sphere is unstable towards
condensation of quark pairs (Cooper).

filledfilled
p

s

−p

−s
The simplest and favorable is (for 2 flavors) uRdR.

Does not break chiral symmetry
(unlike q̄q = q†LqR + h.c.).
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However, for 3 flavors, analogous SU(3)chiral is broken.
X = uRdR + sRuR + dRsR is not flavor singlet.
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Large µ, color superconductivity and CFL

Asymptotic freedom ⇒ αs(µ) → 0.

Quarks of “different color” (color antisymmetric
state) attract. Fermi sphere is unstable towards
condensation of quark pairs (Cooper).

filledfilled
p

s

−p

−s
The simplest and favorable is (for 2 flavors) uRdR.

Does not break chiral symmetry
(unlike q̄q = q†LqR + h.c.).

However, for 3 flavors, analogous SU(3)chiral is broken.
X = uRdR + sRuR + dRsR is not flavor singlet.

But flavor transformation on X can be undone by a color transformation,
which is “invisible”. However, there is also Y = uLdL + . . ., and although it
can also be undone by a color rotation...

the simultaneous transformations of qL and qR do change the ground state if
they are not equal. This is the broken chiral symmetry.

Ground state locks color and flavor: CFL (Alford, Rajagopal, Wilczek)
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Location of the CP (theory)
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Event
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Heavy-ion collisions and the phase diagram

(from Braun-Munzinger, Redlich,
Stachel)
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Locating the QCD critical point experimentally
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Energy scan.

Signatures: event-by-event fluctuations.

Susceptibilities diverge ⇒ fluctuations grow towards the critical point.
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Data (example):pT fluctuations (CERES)
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Summary and conclusions

Phase diagram of QCD is a challenging, long-standing problem.

αs � 1 calculations can address regions of T , µ � 1 fm−1. Many interesting
phenomena.

The most interesting region is still out of reach of controllable calculations.

Existence of the critical point on the QCD phase diagram is suggested by
many theoretical approaches, including, recently, lattice QCD.

Heavy ion experiments can discover the critical point – by measuring
fluctuation observables as a function of collision parameters.

Search is underway.

Needed:

Theory: a reliable (systematically improvable) method to study Tµ plane and
locate CP.

Experiment: scan of the QCD phase diagram —
√

s scan.
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