Phase Diagram of QCD

M. Stephanov

U. of Illinois at Chicago

 \checkmark Hadrons: protons, neutrons, π -ons, resonances, strange hadrons, etc.

 \blacksquare Hadrons: protons, neutrons, π -ons, resonances, strange hadrons, etc.

FLAVOR: Flavor symmetry (e.g., p and n, or π⁰ and π⁺).
 "Periodic table" of hadrons from a small number of *quarks* – u, d, s, ... (only 6 flavors are needed for all known hadrons, and only 2 are needed for p ~ uud, n ~ udd, π ~ qq).

I Hadrons: protons, neutrons, π -ons, resonances, strange hadrons, etc.

FLAVOR: Flavor symmetry (e.g., p and n, or π⁰ and π⁺).
 "Periodic table" of hadrons from a small number of *quarks* – u, d, s, ... (only 6 flavors are needed for all known hadrons, and only 2 are needed for p ~ uud, n ~ udd, π ~ qq).

COLOR: Each quark should be able to take on one of 3 "colors". Changing flavor of quarks (e.g., $u \rightarrow d$) gives another hadron. But changing color has no observable consequence ("hidden" symmetry). Why?

 \blacksquare Hadrons: protons, neutrons, π -ons, resonances, strange hadrons, etc.

FLAVOR: Flavor symmetry (e.g., p and n, or π⁰ and π⁺).
 "Periodic table" of hadrons from a small number of *quarks* – u, d, s, ... (only 6 flavors are needed for all known hadrons, and only 2 are needed for p ~ uud, n ~ udd, π ~ qq).

- COLOR: Each quark should be able to take on one of 3 "colors". Changing flavor of quarks (e.g., $u \rightarrow d$) gives another hadron. But changing color has no observable consequence ("hidden" symmetry). Why?
- PARTONS Deep-inelastic (e.g., e + p) scattering: shows proton has a simple structure pointlike constituents, which do not "feel" each other. Quarks?

- \blacksquare Hadrons: protons, neutrons, π -ons, resonances, strange hadrons, etc.
- FLAVOR: Flavor symmetry (e.g., p and n, or π⁰ and π⁺).
 "Periodic table" of hadrons from a small number of *quarks* u, d, s, ... (only 6 flavors are needed for all known hadrons, and only 2 are needed for p ~ uud, n ~ udd, π ~ qq).
- COLOR: Each quark should be able to take on one of 3 "colors". Changing flavor of quarks (e.g., $u \rightarrow d$) gives another hadron. But changing color has no observable consequence ("hidden" symmetry). Why?
- PARTONS Deep-inelastic (e.g., e + p) scattering: shows proton has a simple structure pointlike constituents, which do not "feel" each other. Quarks?
- What force holds quarks together in hadrons? It weakens if the interaction is brief or if quarks are close to each other ($r \ll R_{\text{proton}} \sim 10^{-13}$ cm ≡ 1 fermi).

$$\alpha_{\rm strong}(r) = \frac{Fr^2}{\hbar c} \stackrel{r \to 0}{\to} 0$$

Compare to E.M.: $\alpha = 1/137$ (and only grows as $r \to 0$). In contrast $\alpha_{\text{strong}}(1 \text{fermi}) \sim 1$ and $\to 0$ as $r \to 0$.

Hadrons: protons, neutrons, π -ons, resonances, strange hadrons, etc.

FLAVOR: Flavor symmetry (e.g., p and n, or π⁰ and π⁺).
 "Periodic table" of hadrons from a small number of *quarks* – u, d, s, ... (only 6 flavors are needed for all known hadrons, and only 2 are needed for p ~ uud, n ~ udd, π ~ qq).

- COLOR: Each quark should be able to take on one of 3 "colors". Changing flavor of quarks (e.g., $u \rightarrow d$) gives another hadron. But changing color has no observable consequence ("hidden" symmetry). Why?
- PARTONS Deep-inelastic (e.g., e + p) scattering: shows proton has a simple structure pointlike constituents, which do not "feel" each other. Quarks?
- What force holds quarks together in hadrons? It weakens if the interaction is brief or if quarks are close to each other ($r \ll R_{\text{proton}} \sim 10^{-13}$ cm ≡ 1 fermi).

$$\alpha_{\rm strong}(r) = \frac{Fr^2}{\hbar c} \stackrel{r \to 0}{\to} 0 \qquad \qquad \text{ASYMPTOTIC FREEDON}$$

Compare to E.M.: $\alpha = 1/137$ (and only grows as $r \to 0$). In contrast $\alpha_{\text{strong}}(1 \text{fermi}) \sim 1 \text{ and } \to 0 \text{ as } r \to 0$.

QCD – asymptotically free field theory

- Only one such class of theories: Non-abelian gauge theories. (QED is abelian gauge theory.)
- Bonus: it involves a hidden symmetry (in QED U(1) phase rotation). In QCD it is the color symmetry – SU(3).
- QCD is a quantum field theory:

$$S = \int d^4x \left[\sum_{f=1}^{N_f} \bar{q}_f \left(i \partial \!\!\!/ + g A - m_f \right) q_f - \frac{1}{2} \operatorname{Tr} F_{\mu\nu} F^{\mu\nu} \right];$$

QCD thermodynamics

- Applications:
 - Neutron stars (large density, low T)
 - Heavy-ion collisions (large T, large density)
- QCD allows first principle calculations

QCD thermodynamics

- Applications:
 - Neutron stars (large density, low T)
 - Heavy-ion collisions (large T, large density)
- QCD allows first principle calculations
- Questions: phases, phase diagram, as function of T, μ_B , ...

Contemporary view

"Minimal" phase diagram

Contemporary view

"Minimal" phase diagram

Contemporary view

"Minimal" phase diagram

Role of chiral symmetry ($m_q = 0$)

$$q \equiv \begin{pmatrix} u \\ d \end{pmatrix} \quad \text{Chiral:} \begin{pmatrix} u_L \\ d_L \end{pmatrix} \to e^{+i\boldsymbol{\alpha}\cdot\boldsymbol{\tau}} \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} u_R \\ d_R \end{pmatrix} \to e^{-i\boldsymbol{\alpha}\cdot\boldsymbol{\tau}} \begin{pmatrix} u_R \\ d_R \end{pmatrix}$$

Role of chiral symmetry ($m_q = 0$)

$$q \equiv \begin{pmatrix} u \\ d \end{pmatrix} \quad \text{Chiral:} \begin{pmatrix} u_L \\ d_L \end{pmatrix} \to e^{+i\boldsymbol{\alpha}\cdot\boldsymbol{\tau}} \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} u_R \\ d_R \end{pmatrix} \to e^{-i\boldsymbol{\alpha}\cdot\boldsymbol{\tau}} \begin{pmatrix} u_R \\ d_R \end{pmatrix}$$

Order parameter:

 $\langle \bar{q}q \rangle = \langle q_L^{\dagger}q_R + \text{h.c.} \rangle$

- non-zero in one phase (in vacuum),
- exactly zero in another phase protected by symmetry!

Compare ferromagnet : for $T < T_c \langle M \rangle \neq 0$, while for $T > T_c \langle M \rangle = 0$.

Role of chiral symmetry $(m_q = 0)$

$$q \equiv \begin{pmatrix} u \\ d \end{pmatrix} \quad \text{Chiral:} \begin{pmatrix} u_L \\ d_L \end{pmatrix} \to e^{+i\boldsymbol{\alpha}\cdot\boldsymbol{\tau}} \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} u_R \\ d_R \end{pmatrix} \to e^{-i\boldsymbol{\alpha}\cdot\boldsymbol{\tau}} \begin{pmatrix} u_R \\ d_R \end{pmatrix}$$

Order parameter:

 $\langle \bar{q}q \rangle = \langle q_L^{\dagger}q_R + \text{h.c.} \rangle$

- non-zero in one phase (in vacuum),
- exactly zero in another phase protected by symmetry!

Compare ferromagnet : for $T < T_c \langle M \rangle \neq 0$, while for $T > T_c \langle M \rangle = 0$. This requires singularity \equiv phase transition

 $m_q \neq 0$

Why all phases (can be) connected? Because \nexists order parameters: no chiral symmetry ($m_q \neq 0$);

No phase boundary does not mean same physics, of course – (compare water-vapor, gas-plasma, ...) Critical point in many liquids – critical opalescence

 $m_q \neq 0$

Phase Diagram of QCD

Large μ , color superconductivity and CFL

- Solution Asymptotic freedom $\Rightarrow \alpha_s(\mu) \rightarrow 0.$
- Quarks of "different color" (color antisymmetric state) attract. Fermi sphere is unstable towards condensation of quark pairs (Cooper).
- The simplest and favorable is (for 2 flavors) $u_R d_R$.
- Does not break chiral symmetry (unlike $\bar{q}q = q_L^{\dagger}q_R + h.c.$).

Large μ , color superconductivity and CFL

- Solution Asymptotic freedom $\Rightarrow \alpha_s(\mu) \rightarrow 0$.
- Quarks of "different color" (color antisymmetric state) attract. Fermi sphere is unstable towards condensation of quark pairs (Cooper).
- The simplest and favorable is (for 2 flavors) $u_R d_R$.
- Does not break chiral symmetry (unlike $\bar{q}q = q_L^{\dagger}q_R + h.c.$).
- However, for 3 flavors, analogous SU(3)_{chiral} is broken. $X = u_R d_R + s_R u_R + d_R s_R$ is not flavor singlet.

Large μ , color superconductivity and CFL

- Solution Asymptotic freedom $\Rightarrow \alpha_s(\mu) \rightarrow 0.$
- Quarks of "different color" (color antisymmetric state) attract. Fermi sphere is unstable towards condensation of quark pairs (Cooper).
- The simplest and favorable is (for 2 flavors) $u_R d_R$.
- Does not break chiral symmetry (unlike $\bar{q}q = q_L^{\dagger}q_R + h.c.$).

- However, for 3 flavors, analogous SU(3)_{chiral} is broken. $X = u_R d_R + s_R u_R + d_R s_R$ is not flavor singlet.
- But flavor transformation on X can be undone by a color transformation, which is "invisible". However, there is also $Y = u_L d_L + \ldots$, and although it can also be undone by a color rotation...
- the simultaneous transformations of q_L and q_R do change the ground state if they are not equal. This is the broken chiral symmetry.

Ground state locks color and flavor. CFL (Alford, Rajagopal, Wilczek)

Phase Diagram of QCD

Location of the CP (theory)

Event

Heavy-ion collisions and the phase diagram

(from Braun-Munzinger, Redlich, Stachel)

(from Becattini et al)

Locating the QCD critical point experimentally

Energy scan.

Signatures: event-by-event fluctuations.

Susceptibilities diverge \Rightarrow fluctuations grow towards the critical point.

Data (example): p_T fluctuations (CERES)

Near the critical point (for CERES acceptance):

$$\sim 2\% \times \left(\frac{G}{300 \text{ MeV}}\right)^2 \left(\frac{\xi_{\sigma}}{3 \text{ fm}}\right)^2$$

 $(\xi_{\sigma}=1/m_{\sigma})$

Signal one is looking for: non-monotonic dependence on \sqrt{s} .

Summary and conclusions

- Phase diagram of QCD is a challenging, long-standing problem.
- $\alpha_s \ll 1$ calculations can address regions of T, $\mu \gg 1$ fm⁻¹. Many interesting phenomena.
- The most interesting region is still out of reach of controllable calculations.
- Existence of the critical point on the QCD phase diagram is suggested by many theoretical approaches, including, recently, lattice QCD.
- Heavy ion experiments can discover the critical point by measuring fluctuation observables as a function of collision parameters. Search is underway.

Needed:

Theory: a reliable (systematically improvable) method to study $T\mu$ plane and locate CP.

Experiment: scan of the QCD phase diagram — \sqrt{s} scan.