Fundamental physics with diatomic molecules: from particle physics to quantum computation....!

- electron electric dipole moment search (SP, "new" physics)
- sources of ultracold molecules for wide range of applications:

 -large-scale quantum computation
 -time variation of fundamental "constants"
 -etc.
- parity violation: Z⁰ couplings & nuclear anapole moments

D. DeMille Yale University Physics Department

Funding: NSF, Keck Foundation, ARO, DOE (Packard Foundation, Sloan Foundation, Research Corporation, CRDF, NIST)

Structure of molecules 0:

"A diatomic molecule has one atom too many." --Art Schawlow (and most atomic physicists)

....or maybe not?

"new" internal degrees of freedom in molecules useable as a resource...?

Structure of molecules I: electronic states

Internuclear distance R

Structure of molecules II: vibration

Internuclear distance R

Structure of molecules III: rotation

Molecular electric dipoles Wavefunctions of polar molecules

Small splitting (~10⁻⁴ eV) between states of opposite parity (rotation) leads to *large polarizability* (vs. atoms, ~ few eV)

CPT theorem \Rightarrow T-violation = CP-violation

Q. How does an electron EDM arise?A. From cloud of accompanying "virtual" particles

Searching for new physics with the electron EDM

Amplifying the electric field E with a polar molecule

Electrical polarization of molecule subjects valence electrons to huge internal field $E_{int} > 10^{10} \text{ V/cm}$ with modest polarizing field $E_{ext} \sim 10 \text{ V/cm}$

Explicit calculations indicate valence electron feels $E_{int} \sim \alpha^2 Z^3 e/a_0^2 \sim 2.1 - 4.0 \times 10^{10} V/cm in PbO*$

semiempirical: M. Kozlov & D.D., PRL **89**, 133001 (2002); *ab initio*: Petrov, Titov, Isaev, Mosyagin, D.D., PRA **72**, 022505 (2005). Spin alignment & molecular polarization in PbO (no EDM)

The central dogma of physics (c.f. S. Freedman)

Theorist :: Experimentalist :: Fact Farmer :: Pig :: Truffle

PbO vapor cell and oven

Sapphire windows bonded to ceramic frame with gold foil "glue"

Gold foil electrodes and "feedthroughs"

quartz oven body 800 C capability wide optical access w/non-inductive heater for fast switching

Present Experimental Setup (top view)

Zeeman quantum beats in PbO

Excellent fit to Monte Carlo w/PbO motion, known lifetime Shot noise-limited S/N in frequency extraction (Laser-induced spin alignment only here)

Current status: a proof of principle [D. Kawall *et al.*, PRL **92**, 133007 (2004)]

•PbO vapor cell technology in place

•Collisional cross-sections as expected \Rightarrow anticipated density OK

•Signal sizes large, consistent with expectation; improvements under way should reach target count rate: 10¹¹/s.

•Shot-noise limited frequency measurement using quantum beats in fluorescence

•g-factors of Ω -doublet states match precisely \Rightarrow co-magnetometer will be very effective

•E-fields of required size applied in cell; no apparent problems

 $\Rightarrow First useful EDM data ~early 2006; \\ \delta d_e \sim 3 \times 10^{-29} e \cdot cm within ~2 years...?$

Applications of ultracold <u>polar</u> molecules

- Precision measurements/symmetry tests: narrow lines improve sensitivity & molecular structure *enhances* effects (small energy splittings)
 - \rightarrow Time-reversal violating electric dipole moments (×10³ vs. atoms)
 - \rightarrow Parity violation: properties of Z⁰ boson & nuclear anapole moments (×10¹¹ !!)
 - \rightarrow New tests of time-variation of fundamental constants? ($\times 10^3$ vs. atoms)
- Coherent/quantum molecular dynamics
 - →Novel collisional phenomena (e.g. ultra-long range dimers)
 →ultracold chemical reactions (e.g. tunneling through reaction barriers)
- Electrically polarized molecules have **tunable** interactions that are extremely strong, long-range, and anisotropic--*a new regime*
 - →Models of strongly-correlated systems (quantum Hall effect, etc.)
 - \rightarrow Finite temperature quantum phase transitions
 - \rightarrow New, exotic quantum phases (supersolid, checkerboard, etc.)
 - →novel BCS pairing mechanisms (models for exotic superconductivity)

→Large-scale quantum computation *D. DeMille, Phys. Rev. Lett* 88, 067901 (2002)

Quantum computation with ultracold polar molecules

- bits = electric dipole moments of polarized diatomic molecules
- register = regular array of bits in "optical lattice" trap (weak trap \Rightarrow low temp needed!)
- processor = rf resonance w/spectroscopic addressing (robust, like NMR)
- interaction = *electric* dipole-dipole (CNOT gate speed ~ 1-100 kHz)
- decoherence = scattering from trap laser (T ~ 5 s \Rightarrow N_{op} ~ 10⁴-10⁶ !)
- readout = laser ionization or cycling fluorescence + imaging (fairly standard)
- scaling up? (10⁴- 10⁷ bits looks reasonable: one/site via Mott insulator transition)

CNOT requires bit-bit interactions

Size of interaction term "a" determines maximum gate speed: $\tau^{-1} \sim \Delta v \sim a$

Quantum computation with trapped polar molecules

- Quantum computer based on ultracold polar molecules in an optical lattice trap can plausibly reach
 >10⁴ bits and >10⁴ operations in ~5 s decoherence time
- Based heavily on existing work & likely progress:
 Main requirement is sample of ultracold (T □ 10 µK) polar molecules with phase space density ~10⁻³
- Anticipated performance is above some very significant technological thresholds:

 $N_{op} > 10^4 \Rightarrow robust$ error correction OK? Crude scaling \Rightarrow 300 bits, 10⁴ ops/s \approx *teraflop* classical computer

Cold molecules from cold atoms: photoassociation

•very weak free-bound (but excited) transition driven by laser for long times (trapped atoms)

• electronically excited molecules decay to hot free atoms *or* to ground-state molecules

• Production of *polar* molecules requires assembly from two different atomic species

 molecules can be formed in single rotational state, at translational temperature of atoms (100 μK routine, =1 μK possible)
 BUT molecules are formed in range of high vibrational states

Internuclear distance R

MOT trap loss photoassociation spectra

Cs fluorescence

Rb fluorescence

0.7

0.6

0.5

0.0

J=1

0.8

frequency [GHz] -30.711 cm⁻¹

1.0

1.2

1.4

•up to 70% depletion of trap for RbCs ⇒ near 100% atom-molecule conversion
•spectroscopically selective production of individual low-J rotational states

RbCs

0.6

0.4

J=0

0.2

A.J. Kerman et al., Phys Rev. Lett. 92, 033004 (2004)

Verification of polar molecules: behavior in E-field

Fitted electric dipole moment for this ($\Omega=0^+$) state: $\mu = 1.3$ Debye

Detection of vibrationally excited RbCs

Vibrationally excited RbCs $@T = 100 \ \mu K$

Cold molecules from cold atoms: stopping the vibration

• free-bound (but excited) transition driven by laser

•excited molecules can decay to molecular ground state

- molecules can be formed in single rotational state, at translational temperature of atoms (100 μK routine, =1 μK possible)
 BUT molecules are formed in range of high vibrational states
 - High vibrational states are UNSTABLE to collisions and have NEGLIGIBLE POLARITY
 ⇒need vibrational ground state!
 - Laser pulses should be able to transfer one excited state to vibrational ground state:

⇒TRULY ultracold molecules (translation, rotation, vibration)

Production of absolute ground state molecules

Coming next: "distilled" sample of polar, absolute ground-state RbCs molecules

Status & Outlook: ultracold polar molecules

- Optical production of ultracold polar molecules now in hand! [J.Sage et al., PRL 94, 203001 (2005)] T ~ 100 μK now, but obvious route to lower temperatures
- Formation rates of up to ~10⁷ mol/s/level in high vibrational states AND
 efficient transfer to v=0 ground state (~5% observed, 100% possible)
 ⇒ Large samples of stable, ultracold polar molecules in reach
- molecule trapping (CO₂ lattice/FORT), collisions & manipulation (E-fields, rotational transitions, etc.) are next
- Ultracold polar molecules are set to open new frontiers in many-body physics, precision measurements, & chemical physics

DeMille Group

Collaborators

(L. Hunter [Amherst]), A. Titov, M. Kozlov [PNPI],T. Bergeman [Stony Brook], E. Tiesinga [NIST],R. Paolino [USCGA], J. Doyle [Harvard]

Ph.D. Students

S. Sainis, J. Sage, (F. Bay), Y. Jiang, J. Petricka, S. Bickman, D. Rahmlow, N Gilfoy, D. Glenn, A. Vutha, D. Murphree, P. Hamilton Undergrads (J. Thompson, M. Nicholas, D. Farkas, J. Waks, J. Brittingham, Y. Gurevich, Y. Huh, A. Garvan, C. Cheung C. Yerino, D. Price)

Postdocs/Staff: S. Cahn, (V. Prasad,

D. Kawall, A. J. Kerman)