Fundamental physics with diatomic molecules:
from particle physics to quantum computation....!
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* sources of ultracold molecules for wide range of applications:
--large-scale quantum computation
--time variation of fundamental “constants’
--etc.

* parity violation: Z" couplings & nuclear anapole moments
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Structure of molecules O:

"A diatomic molecule has one atom too many.”
--Art Schawlow
(and most atomic physicists)

....or maybe not?

“new” internal degrees of freedom in molecules
useable as a resource...?



Energy

Structure of molecules I: electronic states
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Structure of molecules 11: vibration
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Structure of molecules Ill: rotation
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Molecular electric dipoles
Wavefunctions of polar molecules

With E-field: polarized -
induced dipole molecules act like

permanent dipoles

J=1,m,=0 .. Z, E
- |p> A {,\ |\L> o —

No E-field: no dipole!

Small splitting (~10- eV) between states of opposite parity (rotation)
leads to large polarizability (vs. atoms, ~ few eV)



A permanent EDM Violates T and P Rramsey
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Q. How does an electron EDM arise?
A. From cloud of accompanying “virtual” particles
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Searching for new physics with the electron EDM
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General method to detect an EDM
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Amplifying the electric field £ with a polar molecule

Ph+ E Electrical polarization

ext
4 of molecule

subjects valence electrons
to huge internal field
E. >10V/cm

with modest polarizing field

O- E_ ~10V/cm

Explicit calculations indicate valence electron feels
E. ~a’*Z’e/af ~21-4.0x10"V/cm in PbO*

semiempirical: M. Kozlov & D.D., PRL 89, 133001 (2002);
ab initio: Petrov, Titov, Isaev, Mosyagin, D.D., PRA 72, 022505 (2005).



Spin alignment & molecular polarization in PbO (no EDM)
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EDM measurement
In PbO*

“Internal
co-magnetometer”:
most systematics
cancel in up/down
comparison!
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The central dogma
of physics (c.f. S. Freedman)
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PbO vapor cell and oven

Sapphire
windows
bonded to ceramic
frame with gold
foil “glue™

Gold foil
electrodes and
“feedthroughs”

quartz oven body
800 C capability
wide optical access
w/non-inductive heater
for fast switching




Present Experimental Setup (top view)
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Zeeman quantum beats in PbO
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Excellent fit to Monte Carlo w/PbO motion, known lifetime
Shot noise-limited S/N In frequency extraction

(Laser-induced spin alignment only here)



Current status: a proof of principle
[D. Kawall et al., PRL 92, 133007 (2004)]

*PbO vapor cell technology in place
Collisional cross-sections as expected =anticipated density OK

Signal sizes large, consistent with expectation;
Improvements under way should reach target count rate: 10Y/s.

«Shot-noise limited frequency measurement
using quantum beats Iin fluorescence

g-factors of QQ-doublet states match precisely
—=co-magnetometer will be very effective

E-fields of required size applied in cell; no apparent problems

= First useful EDM data ~early 2000,
od, ~ 3x10? e-cm within ~2 years...?



Applications of ultracold polar molecules

 Precision measurements/symmetry tests: narrow lines improve sensitivity
& molecular structure enhances effects (small energy splittings)

—Time-reversal violating electric dipole moments (x103 vs. atoms)
—Parity violation: properties of Z° boson & nuclear anapole moments (x10* 1)

—New tests of time-variation of fundamental constants? (x102 vs. atoms)

 Coherent/quantum molecular dynamics

—Novel collisional phenomena (e.g. ultra-long range dimers)
—ultracold chemical reactions (e.g. tunneling through reaction barriers)

» Electrically polarized molecules have tunable interactions
that are extremely strong, long-range, and anisotropic--a new regime

—Models of strongly-correlated systems (quantum Hall effect, etc.)

—Finite temperature quantum phase transitions
—New, exotic quantum phases (supersolid, checkerboard, etc.)
—novel BCS pairing mechanisms (models for exotic superconductivity)

— L arge-scale guantum computation D. DeMille, Phys. Rev. Lett 88, 067901 (2002)



Quantum computation with ultracold polar molecules

E-field due to each Weak
Strong dipole influences +V. E-field
E-field Its neighbors

Standing-wave trap
laser beam -V

* bits = electric dipole moments of polarized diatomic molecules

o register = regular array of bits in “optical lattice” trap (weak trap =low temp needed!)
o processor = rf resonance w/spectroscopic addressing (robust, like NMR)

* interaction = electric dipole-dipole (CNOT gate speed ~ 1-100 kHz)

» decoherence = scattering from trap laser (T ~5s= N, ~10-10°!)

o readout = laser ionization or cycling fluorescence + imaging (fairly standard)

e scaling up? (10%- 107 bits looks reasonable: one/site via Mott insulator transition)



CNOT requires bit-bit interactions
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Quantum computation
with trapped polar molecules

» Quantum computer based on ultracold polar molecules
In an optical lattice trap can plausibly reach
>104 bits and >10% operations in ~5 s decoherence time

 Based heavily on existing work & likely progress:

Main requirement is sample of ultracold (T /710 xK) polar molecules
with phase space density ~10-3

 Anticipated performance is above
some very significant technological thresholds:

Nop > 10* = robust error correction OK?

Crude scaling =
300 bits, 10% ops/s =~ teraflop classical computer



Cold molecules from cold atoms: photoassociation

svery weak free-bound (but
¥ (R)|? excited) transition driven by laser
y for long times (trapped atoms)

E’o G+P  © electronically excited molecules
= decay to hot free atoms
“ or to ground-state molecules
V.(R) : laser
e * Production of polar molecules

requires assembly from
|\Pf(R)|2 two different atomic species

; : * molecules can be formed in
|Tg(R)|2|i§ single rotational state, at
.h“f translational temperature of atoms
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MOT trap loss photoassociation spectra
RbCs* and Cs,* formation ($2 = 0)

Cs fluorescence

REb fluorescence

0.5 RbCs
00 02 04 06 08 10 12 14

frequency [GHz] -30.711 cm”

eup to 70% depletion of trap for RbCs = near 100% atom-molecule conversion

espectroscopically selective production of individual low-] rotational states

A.J. Kerman et al., Phys Rev. Lett. 92, 033004 (2004)



Verification of polar molecules:
behavior in E-field

laser frequency [GHz] -55.64 cm”’
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Fitted electric dipole moment for this (€2=0%) state: u = 1.3 Debye



Detection of vibrationally excited RbCs
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Vibrationally excited RbCs @T = 100 uK
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Cold molecules from cold atoms: stopping the vibration

energy

v

Internuclear distance R

e free-bound (but excited)
transition driven by laser

sexcited molecules can decay to
molecular ground state

* molecules can be formed in
single rotational state, at
translational temperature of atoms
(100 pK routine, =1 puK possible)
BUT molecules are formed in

range of high vibrational states

*High vibrational states are
UNSTABLE to collisions and have
NEGLIGIBLE POLARITY

—need vibrational ground state!

* Laser pulses should be able to
transfer one excited state to
vibrational ground state:

=TRULY ultracold molecules
(translation, rotation, vibration)






Production of absolute ground state molecules
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~6 separate transitions

eEstimated efficiency —8%, limited by
poor pulsed laser spectral profiles



Coming next: “distilled” sample of polar, absolute
ground-state RbCs molecules
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Status & Outlook: ultracold polar molecules

« Optical production of ultracold polar molecules now in hand!
[J.Sage et al., PRL 94, 203001 (2005)]
T ~ 100 uK now, but obvious route to lower temperatures

« Formation rates of up to ~107 mol/s/level in high vibrational states
AND

efficient transfer to v=0 ground state (~5% observed, 100% possible)
— Large samples of stable, ultracold polar molecules in reach

» molecule trapping (CO, lattice/FORT)),
collisions & manipulation (E-fields, rotational transitions, etc.)
are next

 Ultracold polar molecules are set to open new frontiers in
many-body physics, precision measurements, & chemical physics
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