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4

Quantum dots pose an interesting problem in which three complications- disorder, 5

interaction and finite size- come together. I describe progress that can be made by 6

combining Random Matrix Theory (RMT) and the Renormalization Group (RG) to 7

attack the problem. 8
9
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1. THE DOT 11

It is a pleasure to be able to celebrate the birthdays of these two eternal youths, 12

Pierre and Jim. One cannot work in condensed matter for long without running 13

into their numerous contributions. In my case I also had the pleasure of running 14

into Pierre himself fairly regularly over the last decade when he was Yale’s Deputy 15

Provost for Sciences. As chairman of Physics, I have locked horns with Pierre on 16

numerous occasions over dollars. He would generally begin by responding to all 17

requests with a No, earning the title Dr. No. This was just Pierre saying “Hello, let 18

us talk.” I learnt that his No was a No in the complex plane that could adiabatically 19

be rotated into a Yes. One just had to know how to handle Pierre Pressure. It is also 20

here that I became acquainted with his practice of “scale invariant arguments,” the 21

idea being that you should not be able to tell from the intensity of the arguments 22

how much we are arguing about. In fact, as time went by, I noticed counter-intuitive

A1

23

scaling violations. Thus, when I took a request for over a million dollars to him, 24

he would read the requested figure from the right to left and launch a vigorous and 25

intense interrogation on the cents requested. By the time we crossed the decimal 26

point to the units place he would have already begun to lose interest and when 27

we got to the millions, he was ready to agree to anything. This is how Pierre has 28
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allocated millions for science in general at Yale and for Yale Physics in particular.29

I was however sworn to secrecy, that I would not tell the world that deep down he30

was a pussy cat, because he liked this tough in-your-face-Bell-Labs image. But31

now that he has left Yale, the truth about “deep-pockets” can be revealed.32

Anyway Pierre and Jim, I see many more productive years of Physics ahead33

and wish you all the best.34

Now for my subject of quantum dots. I ask you not to take offense at the title,35

it is just my way of preempting any hostile questions from experts.36

For our purposes, the dot is an island of size L (in the nanoscale) within which37

electrons can live. The boundary of the dot is sufficiently irregular that classical38

motion is chaotic (at and around the Fermi energy). The dot is otherwise dirt-free39

and motion within is ballistic. Electrons are allowed to tunnel in and out of the40

dot and the conductance G is measured as a function of the gate voltage Vg. The41

challenge is to describe the observed(1) series of peak positions and heights on a42

statistical basis.(2−4)
43

The relevant energy scales are �, the average single particle level spacing and
ET, the Thouless energy defined by ET = h̄vF/L where vF is the Fermi velocity.
The Thouless energy has a dual significance for us. First if the dot is connected
to big fat leads, electrons will cross the dot in a time L/vF and energy will be
uncertain by an amount ET. Thus

g � ET

�
(1)

single particle levels will contribute to conductance and g will be the dimensional44

conductance. (Note that in the experiments we consider the leads are weakly45

coupled and the levels are sharp.)46

The second significance of ET is that within that band we will assume energy
levels and wave functions obey statistics given by RMT.(5) This in turns means two
things. First, if we find the exact energy levels εα and wavefunction φα and plot
the level spacings within ET (of say the Fermi energy), the resulting distribution
will be indistinguishable from that of a random matrix of the same symmetry.
The second RMT result needs some elaboration. Consider a circular Fermi system
and a concentric annulus of width ET. In the bulk, this region contains an infinite
number of k states. If we now go the dot of size L , the best we can do is wave
packets centered at some k and of width 1/L in both directions. It is readily
verified that we can form g such “Wheel-of-fortune” (WOF) states (as in Fig. 1))
within this annulus.(6) Suppose we expand the g exact eigenstates labeled by an
index α in this WOF basis labeled by k via the functions

〈k|α〉 = φα(k). (2)
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Fig. 1. The Wheel-of-fortune states within a band of energy ET concentric with the Fermi circle.
There are roughly g such states of mean momenta k centered on g equally spaced points on the Fermi
circle. The WOF states are obtained by chopping off plane waves of the desired mean momentum at
the edges of the dot. These states are nearly orthonormal.

Then a typical RMT assumption made here is that

〈
φα(k)φβ(k′)

〉 = δkk′δαβ

g
(3)

where the 〈· · ·〉 denote describe an average over an ensemble of similar dots. Note 47

that this is the minimal correlation we must have: in each sample, α and k label 48

two orthonormal bases, so that if we set k = k′ and sum over k we must get δαβ , 49

sample by sample. (The same goes for setting α = β and summing over them to 50

get δkk′ .) Similar correlators exist for products of four wavefunctions and these 51

have the form of Wick’s theorem. 52

Before proceeding we address a common question. Is there is any reason to 53

believe that the g exact eigenstates within ET can be expanded in terms of the g 54

WOF states? We have verified(6) the following in a numerical study of a “billiard,” 55

or dot. First we manufactured the g states of mean momentum k by choosing g 56

equally spaced points on the Fermi circle and then chopping off the plane waves of 57

these momenta at the edges of the billiard. (We chose g = 37 in our study.) Then 58

we verified that these wavefunctions were orthonormal to an excellent accuracy. 59
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Finally we asked how good a basis these functions formed for expanding the α60

states within ET. We found the exact eigenstate at the middle of the Thouless band,61

i.e, at the Fermi energy, retained more than 99.9% of its norm upon projection62

to the WOF basis. As we left the center of the band the overlap decreased and63

dropped to around 50% at the edges. Thus our results are most reliable only deep64

deep within the Thouless band.65

A simple starting hamiltonian for describing dot physics is that of free fermions:

H = H0 =
∑

α

ψ†
αψαεα. (4)

If we vary the gate voltage on the dot we expect to see some conductance when66

the Fermi energy of the electrons in the leads lines up with one of the levels εα .67

Thus we expect the peak spacings to be equal to the typical single particle spacing68

�. The actual value is much larger because when we add an electron to the dot it69

has electrostatic interactions with the ones already there. This is just the capacitive70

charging energy Q2/2C . So we need to add a term u0 N 2, where N is the number71

of electrons on the dot. (Usually this charging energy is subtracted out when data72

showing conductance versus gate voltage are displayed.) If we take into account73

the spin of the electrons another term −J0S2 is called for, where S is the total spin74

of the dot. This term reflects the fact that electrons of parallel spins will avoid75

each other due to the Pauli principle, and the repulsive interaction energy will be76

lowered at the cost of increased kinetic energy. Thus the hamiltonian at this point77

takes the form(9−11)
78

HU =
∑

α

ψ†
αψαεα + u0 N 2 − J0S2, (5)

where the subscript U stands for “universal” and where a third interaction term79

pertaining to superconducting fluctuations has been dropped.80

Some proponents of the universal hamiltonian give the following argument for81

why no other interactions need be considered. Suppose we take any other familiar82

interaction and transcribe it to the exact basis. The random wavefunctions φα83

will appear and lead to terms with wildly fluctuating signs and phases, with zero84

ensemble average. Since deviations from the zero average will be down by 1/g we85

can drop them at large g. By contrast the two terms kept commute with H0 and86

survive ensemble averaging.87

While I am impressed by the success of HU in explaining a lot of data, this is88

not so for the accompanying arguments. In particular I think ensemble averages89

should be performed not on the hamiltonian but calculated observables. I also do90

not know that a term should be dropped because it is small, since it could prover91

relevant in the Renormalization Group (RG) sense. I prefer therefore to let the RG92
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tell us what interactions are important. I turn to a description of an approach based 93

on the RG. 94

As a prelude, I describe my work(7) on the clean system and in the bulk.
Consider a two-dimensional Fermi surface, a circle with Fermi momentum KF.
RG tells us to focus on low energy physics by integrating out high energy degrees
of freedom. For bosons and relativistic fermions, this means small momentum.
For the fermions however low energy means near the Fermi surface. That is, if I
tap the system with a hammer a few fermions near the Fermi surface will jump
out, neither those electrons deep in the sea nor the levels far above KF will be
involved. Thus we must eliminate all states but those within a bandwidth � of KF.
What theory will we be left with? The story is long, but the following synopsis
will suffice for now. Consider the limit � → 0. Consider an interaction vertex
u(K1, . . . , K4) with incoming momenta K1 and K2 and outgoing momenta K3

and K4. We may take them to lie on the Fermi circle as � → 0, and thus reduce
them to four angles θ1 . . . θ4. Normally momentum conservation would allow us
to consider just three angles. But if the momenta all come from a circle, then θ3

and θ4 must equal θ1 and θ2 up to a permutation, a result I urge you to verify.
Thus u a is function of just θ1 and θ2 and by rotational invariance, a function of
their difference, θ . This function u(θ ) is none other than Landau’s F function,(8)

derived here using RG. Often one writes

u(θ ) =
∑

m

um cos(mθ ) (6)

where um are the Landau parameters. The corresponding interaction is 95

HL =
∑
θ1,θ ′

n(θ )n(θ ′)um cos
(
m(θ − θ ′)

)
(7)

Note that if only u0 �= 0, we get the u0 N 2 interaction of HU. If we include spin, 96

there are spin density-spin density interactions and J0 corresponds to keeping just 97

the zeorth harmonic. So we need to ask if and when m > 0 terms can be ignored. 98

The first crucial step towards this goal was taken by Murthy and Mathur.(12)
99

Their ideas was as follows. 100

• Step 1: Use the clean system RG described earlier(7) (eliminating momen- 101

tum states on either side of the Fermi surface) to eliminate all states far 102

from the Fermi surface till one comes down to the Thouless band, that is, 103

within ET of EF. 104

• Step 2: Switch to the exact basis states of the chaotic dot, writing the kinetic 105

and interaction terms in this basis. Run the RG by eliminating exact energy 106

eigenstates within ET. 107
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While this looks like a reasonable plan, it is not clear how it is going to be
executed since knowledge of the exact eigenfunctions is needed to even write
down the Landau interaction in the disordered basis:

Vαβγ δ = �

4

∑
kk′

u(θ − θ ′)
(
φ∗

α(k)φ∗
β(k′) − φ∗

α(k′)φ∗
β(k)

)

×(φγ (k′)φδ(k) − φγ (k)φδ(k′)) (8)

(where k and k′ take g possible values) and to evaluate the flow to one loop.
Remarkably it is possible to proceed for the following reason. Let us first assume
only one um is nonzero. If we write down expression for the one loop flow, four-fold
products of the unknown wave functions appear. Now one argues that since many
terms enter the sum, there is self-averaging. In other words one can show that if
the diagram for any one realization is replaced by the ensemble average, the error
is down by a power of 1/g, and thus ignorable in this large g calculation. Thus no
details of the exact wavefunctions are involved in computing the flow! What they
find is the remarkable result that the renormalized Vαβγ δ is itself equivalent to just
a single um , but of different size. The flow of um is given by

dum

d ln �
= −um − cu2

m m �= 0 (9)

where c is independent of m and of order unity.108

Note that u0 does not flow and that just as in the BCS flow of the clean system,(7)
109

different m’s do not mix to this order. If spin were included J0 wouldn’t flow either.110

The flow implies that all positive um’s flow to zero as do negative ones with111

um > u∗, the fixed point of the flow. Thus all points to the right of u∗ flow to HU.112

The universal hamiltonian is thus an RG fixed point with a domain of attraction113

of order unity.114

The work of Murthy and Mathur raises two questions: is the fixed point u∗ of115

order unity to be trusted (coming as it does from a one loop calculation) and what116

happens to the left of it? This was answered by Murthy and myself.(13) We found117

that at large g one did not have to rely on RG once one got to down to ET using118

Step 1. Instead the theory could be solved by saddle point methods employed in119

1/N expansions with g playing the role of N . The results became exact as g → ∞.120

I give only a few details here referring you to the above references and ref. 14.121

Suppose we have a theory with N flavors defined schematically by a path
integral:

Z =
∫

dψdψ̄eψ̄ Dψ+u(ψ̄ψ)2
(10)

where D stands for the quadratic kinetic energy term, and the sum over flavors or
integral over spacetime is suppressed. If we now introduce a Hubbard-Stratonovic
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field σ we may proceed as follows

Z =
∫

dψdψ̄σeψ̄(D+σ )ψ−σ 2/2u (11)

=
∫

dσeN T rln(D+σ )−σ 2/2u (12)

Using the largeness of N , one does the σ integral by saddle point. If there is any 122

symmetry breaking in σ , this is a reliable way to see it and to to study it. 123

In our problem, D would stand for the kinetic energy of noninteracting electrons 124

in the dot. Although there were N = g fermion labels (α), they were not related 125

by symmetry to begin with, so that the appearance of an N in front of the Tr Ln 126

was not a given. However if one did the Tr Ln order by order in σ and used self 127

averaging as in the one loop flow, one would find a g2 in front, playing the role 128

of N . 129

Since we have a large N theory here it follows that as in all large N theories, 130

the one-loop flow and the new fixed point at strong coupling are parts of the 131

final theory. However the exact location of the critical point cannot be predicted, 132

as pointed out to us by Professor Piet Brower. The reason is that the Landau 133

couplings um are defined at a scale EL much higher than ET (but much smaller 134

than EF) and their flow till we come down to ET, where our analysis begins, is not 135

within the regime we can control. In other words we can locate u∗ in terms of what 136

couplings we begin with at ET, but these are the Landau parameters renormalized 137

in a nonuniversal way as we come down from EL to ET. 138

What is the nature of the state for um ≤ u∗
m? 139

In the strong coupling region σ acquires an expectation value in the ground state. 140

The dynamics of the fermions is affected by this variable in many ways: quasi- 141

particle widths become broad very quickly above the Fermi energy, the second 142

difference �2 has occasionally very large values and can even be negative,2 and 143

the system behaves like one with broken time-reversal symmetry if m is odd.(14)
144

Long ago Pomeranchuk(15) found that if a Landau function of a pure system 145

exceeded a certain value, the fermi surface underwent a shape transformation from 146

a circle to an non-rotationally invariant form. Recently this transition has received 147

a lot of attention(16−17) The transition in question is a disordered version of the 148

same. Details are given in refs. 13 and 14. 149

Details aside, there is another very interesting point: even if the coupling 150

does not take us over to the strong-coupling phase, we can see vestiges of the 151

critical point u∗
m and associated critical phenomena. This is a general feature of 152

2 How can the cost of adding one particle be negative (after removing the charging energy)? The answer
is that adding a new particle sometimes lowers the energy of the collective variable which has a life
of its own. However, if we turn a blind eye to it and attribute all the energy to the single particle
excitations, �2 can be negative.
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1/g
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weak coupling
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Fig. 2. The generic phase diagram for a second-order quantum phase transition. The horizontal axis
represents the coupling constant which can be tuned to take one across the transition. The vertical axis
is usually the temperature in bulk quantum systems, but is 1/g here, since in our system one of the
roles played by g is that of the inverse temperature.

many quantum critical points,(18) i.e., points like u∗
m where as a variable in a153

hamiltonian is varied, the system enters a new phase (in contrast to transitions154

wherein temperature T is the control parameter).155

Figure 2 shows what happens in a generic situation. On the x-axis a variable156

(um in our case) along which the quantum phase transition occurs. Along y is157

measured a new variable, usually temperature T . Let us consider that case first. If158

we move from right to left at some value of T , we will first encounter physics of the159

weak-coupling phase determined by the weak-coupling fixed point at the origin.160

Then we cross into the critical fan (delineated by the V -shaped dotted lines),161

where the physics is controlled by the quantum critical point. In other words we162

can tell there is a critical point on the x -axis without actually traversing it. As we163

move further to the left, we reach the strongly-coupled symmetry-broken phase,164

with a non-zero order parameter.165

It can be shown that in our problem, 1/g2 plays the role of T . That is, g2 stands166

in front of the effective action for σ . Here g also enters at a subdominant level167

inside the action, which makes it hard to predict the exact shape of the critical fan.168

The bottom line is that we can see the critical point at finite 1/g. In addition one169

can also raise temperature or bias voltage to see the critical fan.170

Subsequent work has shown, in more familiar examples that Landau interac-171

tions, that the general picture depicted here is true in the large g limit: upon172

adding sufficiently strong interactions the Universal Hamiltonian gives way to173

other descriptions with broken symmetry.(19)
174

I mentioned that the critical point u∗ (a nonuniversal quantity) cannot be reliably175

predicted in the large g limit. It now is clear from numerical work that it coincides176

with the bulk coupling for the Pomeranchuk transition. In other words, when we177

cross over to the left u∗, the size of the order parameter very rapidly grows from178

the mesoscopic scale of order ET to something of order the Fermi energy. However179

the physics in the critical fan as well as the weak coupling side is as described by180
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our RMT+RG analysis. The strong coupling side has to be reworked from scratch 181

since the Fermi surface assumed in the RG that came down to ET is has suffered 182

huge deformations (in the scale of ET). 183

You can find additional details in my recent lectures in south Africa.(20)
184

To conclude, it is possible to understand interacting electrons in a quantum 185

dot of irregular shape by combining RMT and RG as long as the dot is large, 186

i.e., g → ∞. (Small dots that have large level spacings behave more like atoms 187

and cannot be handled in the present scheme.) The RG allows us to understand 188

the Universal Hamiltonian as fixed point for a range of couplings, a view I find 189

more satisfactory that those based other considerations. The u versus 1/g phase 190

diagram allows us to explore a region not described by the Universal Hamiltonian 191

without having to go to couplings as large as the critical coupling. We should of 192

course remember that at strong coupling there are other possibilities besides the 193

Pomeranchuk phase described here. It will be very interesting if experimentalists 194

could be induced to study strongly interacting dots, a possibility more readily 195

realized in dots than in the bulk since electron density in can be controlled by 196

gates. Stay tuned as we await this. 197

I am grateful to the National science Foundation for grant DMR-0354517 that 198

made this research possible. 199
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