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* Overview of hurricanes
* Physics of mature, steady hurricanes
* The genesis problem

« Hurricanes and the thermohaline
circulation




Formal definition: A tropical cyclone
with 1-min average winds at 10 m
altitude in excess of 32 m/s (64 knots or
/4 MPH) occurring over the North
Atlantic or eastern North Pacific

A tropical cyclone is a nearly symmetric,
warm-core cyclone powered by wind-
Induced enthalpy fluxes from the sea
surface



Source: Wikipedia




~ Hurricane Structure




The View from Space




Hurricane Structure: Wind Speed
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~ Physics of Mature Hurricanes
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Carnot Theorem: Maximum efficiency results from
a particular energy cycle:

* |sothermal expansion

* Adiabatic expansion

* |sothermal compression
« Adiabatic compression

Note: Last leg is not adiabatic in hurricane: Air cools radiatively. But since
environmental temperature profile is moist adiabatic, the amount of
radiative cooling is the same as if air were saturated and descending moist
adiabatically.

Maximum rate of working:
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Total rate of heat input to hurricane:

Q=2z["p|C,IV|(k5—k)+Cp [ V[ |rdr

Dissipative
Surface enthalpy flux heating

In steady state, Work is used to balance frictional dissipation:

W =2z[" p[Cy | V[ ]rdr



Plug into Carnot equation:

[ p[ColVP ]rdr_TTT ["p|CIVI(k —K) |rdr
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If integrals dominated by values of integrands near
radius of maximum winds,
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Theoretical Upper Bound on
Hurricane Maximum Wind Speed.:
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Maximum Annual Potential Intensity (MPH)
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Numerical simulations
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Thermodynamic disequilibrium necessary to
maintain ocean heat balance:

Ocean mixed layer Energy Balance (neglecting
lateral heat transport):
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Relationship between potential
iIntensity (PI) and intensity of
real tropical cyclones
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Cumulative Frequency
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Why do real storms seldom reach
their thermodynamic potential?

One Reason: Ocean Interaction
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km from storm’s center

Mixed layer depth and
currents

Full physics coupled run ML depth (m) and currents at t=10 days
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km from storm’s center
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Comparing Fixed to Interactive SST:

Gert, 1999
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A good simulation of Camille can only be obtained by assuming that
it traveled right up the axis of the Loop Current:

Camille, 1969
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2. Sea Spray










3. Wind Shear
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Dependence on Sea Surface
Temperature (SST):

Potential Intensity from Single-Column Model
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What controls global tropical
cyclone frequency?

* In today’s climate, tropical cyclones must
be triggered by independent disturbances

* Tropical cyclone models also require finite
amplitude perturbations to initiate
hurricanes



Numerical Simulations

Axisymmetric, nonhydrostatic, cloud-
resolving model of Rotunno and

Emanuel (J. Atmos. Sci., 1987); see
Emanuel and Rotunno, Tellus, 1989.

3.75 km horizontal resolution; 300 m In
vertical



Classical initialization with warm-core vortex
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Same behavior in poor man’s model:
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Saturate troposphere inside 100 km in initial state:
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SST=30°C
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Integrations of a 3-D
1 cloud system-resolving
model in radiative-
convective equilibrium
with fixed SST, by

David Nolan
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Second Approach to
Frequency Issue:

Develop an empirical index based on
monthly re-analysis data
Test index against geographic,
seasonal and interannual variability



Empirical Index:
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Number of Events

Seasonal Variability:

Northern Hemisphere Southern Hemisphere
500 T T T 300 T T T
= Actual = Actual
== Predicted == Predicted
250
400
%]
£ 200
300 e
w
© 150
oy
200 2
g 100
100

a1
o




Spatial Variabllity:

January 1971-2003 (# storms per decade per 2.5° square)
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August 1971-2003 (# storms per decade per 2.5° square)
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Ocean Feedback



Ocean Thermohaline Circulation

Great ocean conveyor belt

Source: Broocker, 1991, in Climate charge 1995, Imanats, adaptutions and mitigation of cimate change: scionsficdnchnical analyses, comtribution of warking group 2 to the second assessment reperd of the
inhargovemmental parsd on climate changs, UNEF and WMO, Cambridge prass university, 1896,
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A hot plate is brought in contact with the left half of the surface of a
swimming pool of cold water. Heat diffuses downward and the warm water
begins to rise. The strength of the circulation is controlled in part by the rate
of heat diffusion. In the real world, this rate is very, very small.
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Heat Flux ~ P B

1/3_-2/3
h ~
Adding a stirring rod to this picture greatly enhances the circulation by
mixing the warm water to greater depth and bringing more cold water in
contact with the plate. The strength of the lateral heat flux is proportional to
the 2/3 power of the power put into the stirring, and the 2/3 power of the
temperature of the plate.
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Coupled Ocean-Atmosphere model run for
67 of the 83 tropical cyclones that occurred
In calendar year 1996

Accumulated TC-induced ocean heating
divided by 366 days

Result:

Net column-integrated heating of ocean
Induced by global tropical cyclone activity:

(1.4i0.7)x1015W



Trenberth et al., 2001
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Transient experiment by Rob Korty

ASST = SST

- SST

hurricanes uniform mixing

0.8

0.6

0.4

0.2



Temperature ('C)

Latitude

Figure 4.1. Modern (solid line) and estimated early Eocene (dashed lines) zonal sea
surface temperatures. Modern (diagonal hatch) and estimated early Eocene (vertical
hatch) water temperatures at bottom depths between 1000 m and 5000 m. Modern
data are from the World Ocean Atlas data set {Levitus and Boyer, 1994). The cooler
Eocene SST profile is based on Zachos et al. (1994); the warmer SST profile is based
on Crowley and Zachos (Chapter 3, this volume).



Summary

* Hurricanes are almost perfect Carnot heat
engines, operating off the thermodynamic
disequilibrium between the tropical ocean
and atmosphere, made possible by the
greenhouse effect

* Most hurricanes are prevented from
reaching their potential intensity by storm-
Induced ocean cooling and environmental
wind shear



* Hurricanes result from a finite-amplitude
Instability of the tropical ocean-
atmosphere system

* Hurricane-induced mixing of the upper
ocean may be the main driver of the
ocean’s deep overturning circulation, an
Important component of the climate
system



