
1

Computed imaging: how physics 
connects external measurements to 

internal structure

P Scott Carney

Beckman Institute for Advanced Science and Technology
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

U Toronto 2 October 2008



2

The National Science Foundation, NASA, USAF, Beckman Foundation

 http://optics.beckman.uiuc.edu

Acknowledgements

Graduate Students
Jin Sun (PhD 2008)

Prof. P. Scott Carney

Post-Doctoral Fellows
Brynmor Davis



3

Graduate Students
Tyler Ralston 
Adam Zysk

Post-Doctoral Fellows
Dan Marks

Prof. Stephen A. Boppart 

Acknowledgements:
ISAM



• John Schotland (U Penn)
• Vadim Markel (U Penn)
• Rich Frazin (U Mich)
• Sergey Bozhvolnyi (U Aalborg)

4

Acknowledgements:
NFOT



5

Optical Coherence Tomography
*Spectral Domain

Magnetic Resonance Imaging 
*Ian Atkinson

RADAR NMR spectroscopy

X-ray projection

Inverse problems



5

Optical Coherence Tomography
*Spectral Domain

Magnetic Resonance Imaging 
*Ian Atkinson

Synthetic Aperture Radar 
*Rob Morrison

CT

RADAR NMR spectroscopy

X-ray projection

Inverse problems



5

Optical Coherence Tomography
*Spectral Domain

Magnetic Resonance Imaging 
*Ian Atkinson

Synthetic Aperture Radar 
*Rob Morrison

CT

Inverse problems



Shadowgrams to structure
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X-ray projection

CT

Physics
I(P ) = I(P0)e

−
R P

P0
α(r)dl

Maxwell Eq. Geometrical 
Optics Beers law
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NMR spectroscopy

Physics

Maxwell Eq. Q.M. w/ spin Larmor freq.

ω = 2Bµ/!

Stat mech. τ1 , τ2

Spectra to structure
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RADAR

Synthetic Aperture Radar 
*Rob Morrison

Echograms to structure
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Physics

Maxwell Eq. Reflectance Stolt mapping

S(r, ω) = A(ω)
∫

d3r′ h(r′ − r, ω)η(r)



Optical Coherence Tomography:
range finding with low-

coherence interferometry
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Transverse scanning in OCT imaging
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OCT vs histology - human tumor

200µm

Blood vessel

Adipose tissue

Necrotic tissue

100µm

Luo W, Nguyen FT, Zysk AM, Ralston TS, Brockenbrough J, Marks DL, Oldenburg AL, Boppart SA, “Optical Biopsy of Lymph Node 
Morphology using Optical Coherence Tomography.” Technology in Cancer Research and Treatment, 4 (5), 539-547, October 2005.
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The problem

50µm
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Beam Focusing

B. Hermann, et.al., "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Let., vol. 
29, pp. 2142-2144, 2004.

W. Drexler et. al., “In vivo ultrahigh-resolution optical coherence tomography,”  Opt. Let. Vol.24 No.17 
pp. 1221-1223

Low-NAOCT Column High-NA

!=≈
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50
50

Galvos

Reference

Stage

Lens

Sample

Laser

Spectral domain OCT:  all the data at once

Grating

Lens
Line Camera

Collimator
Spectral-domain
detection
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Strategy 

• Develop forward model for 
illumination, light-sample interaction, 
and detection

• Linearize in the sample if possible
• Simulate and compare forward data to 

reality 
• Apply appropriate approximations
• Invert, analytically if possible
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Mathematics

r0
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Mathematics

r0

Ui(r, r0, k) = A(k)g(r − r0)

Ui(r, r0, k)
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Mathematics

r0

S(r0, k) =

∫
z=0
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Mathematics

r0

S(r0, k) =

∫
z=0

d2r U(r, r0, k)g(r − r0, k)

S(r0, k)Ui(r, r0, k) = A(k)g(r − r0)

Ui(r, r0, k)

UiηG

S(r0, k) = A(k)

∫
z=0

d2r

∫
d3r′G(r′, r, k)g(r′ − r0, k)g(r − r0, k)η(r′).

Us(r, r0, k)

Us(r, r0, k) =

∫
d3r′ G(r′, r, k)η(r′)Ui(r

′, r0, k)
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More math

g(r, k) =
1

2πW 2
0 (k)

e−r2/2W 2

0
(k)

g̃(q, k) = e−q2W 2

0
/2 = e−q2α2/(2k2)

W0(k) = α/kα = π/NA

G(r′, r, k) =
eik|r−r

′|

|r − r′|
=

i

2π

∫
d2q eiq·(r−r

′) e
−ikz(q)(z−z

′)

kz(q)

kz(q) =
√

k2
− q2
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100 mm

Forward simulation

T.S. Ralston, D.L. Marks, P.S. Carney, S.A. Boppart, “Inverse scattering for optical coherence 
tomography,” JOSA A, in press.

T.S. Ralston,  D.L. Marks, F. Kamalabadi, S.A. Boppart. “Deconvolution methods for mitigation of transverse 
blurring in optical coherence tomography.” IEEE Trans. Image Proc. Special Issue on Molecular and Cellular 
Bioimaging, vol.14, no. 9, September 2005.
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The inverse problem

S(r0, k) = A(k)

∫
z=0

d2r

∫
d3r′G(r′, r, k)g(r′ − r0, k)g(r − r0, k)η(r′).
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The inverse problem

S(r0, k) = A(k)

∫
z=0

d2r

∫
d3r′G(r′, r, k)g(r′ − r0, k)g(r − r0, k)η(r′).

S̃(Q, k) = i2πA(k)

∫
d2q

∫
dz′

1

kz(q)
eikz(q)(z′

−z0) eikz(q−Q)(z′
−z0)

× e
−α2Q2

4k2 e
−α2|q−Q/2|2

k2 η̃(Q, z
′)
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The inverse problem

S(r0, k) = A(k)

∫
z=0
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∫
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Solution and regularization

S̃(Q, k) = K(Q, k) ˜̃η [Q,−2kz(Q/2)]

N is the noise floor

Tikhonov solution:

˜̃η(Q, β) =

[

K∗(Q, k, β)S̃(Q, k)

|K(Q, k, β)|2 + 2Nk/kz(Q/2)

]

k=
1

2

√
β2

−Q2
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Polar vs. Hyperbolic Resampling

Radon
SAR
MRI
CT

ISAM
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3D Rendered
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3D Rendered
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ISAM vs Histology



And now for something 
completely different

• Near-field 
• Also scanning
• Also interferometric
• Harder

27
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NSOM images

Betzig and Trautman, Science 257,189-195 (1992).
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PSTM holograms 

12

Fig. 1 Carney et al.

11

3µm × 5µm
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PSTM/NSOM simple model

e
ik(q)·r

k(q) = (q,

√

k2
0
− q2)

Uq(r) =

∫
d3r′ eik(q)·r′G(r, r′)V (r′)

ω0 = ck0Monochromatic field

g
q
Q(r) =

e
i(Q+q)·r

2π

Kq(r; r′) =

∫
d2Q λq

Qgq
Q(r)fq∗

Q (r′)

fq∗
Q (r′) =

−ieiQ·r′−i|z′|k∗

z
(Q+q)−izk

∗

z
(q)

4πk∗
z(Q + q)λq

Q
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Calculation of the pseudo-inverse

Mqq′(Q)δ(2)(Q − Q′) = 〈fq
Q|fq′

Q′〉λ
q
Qλq′

Q′

φQ!q′(r) = c!q′(Q)gq′

Q (r)

M(Q)c!(Q) = ΛQ!c!(Q)

ψQ!(r
′) = Λ−1

Q!

∑

q

c!q(Q)λq
Qfq

Q(r′)

K+(r′; r,q) =

∫
d2Q

∑
!

Λ−1
Q!

ψQ!(r
′)φ∗

Q!q(r)
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And the results are ...

terrible.
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U = [TS + ST + TST + TTS + STT + STS + SST + . . .]Ui

collection

illumination

resum

nonlinear

important correction

Fix the physics:
Multiple interactions with the probe
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Strong tip corrections
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(End of the standard menu,
begin epicurean options)

Conclusions

• Inverse scattering and computed imaging extend the utility and 
scope of data collection methods

• Physics makes it go.
• ISAM is easy and much better that OCT
• NFOT turns holograms into images and 3-d is next.  
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Cross-validation

(a) (b) (c)

Fig. 1. (a) OCT with the focus 450 µm away. (b) OCT
with the focus moved to the plane of interest. (c) ISAM
reconstruction from data taken with the focus as in (a).
The field of view in each panel is 360 µm by 360 µm.

3 Fig. 3. Experimental measurement of the FWHM of the
PSF versus distance from focus for OCT (solid line) and
ISAM (dashed line). The axes are in terms of spot size
(5.6 µm) and Rayleigh range (120 µm).

5



Autocorrelation mitigation
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and decreased performance in the spectrometer [2].
In this Letter it is assumed that a single measure-

ment is taken with !0 set such that the real and con-
jugate images can just be separated. A quantitative
estimate of the object is made from these data using
both OCT and ISAM, and the resulting autocorrela-
tion artifacts are investigated.

The signal S!r" ,k#=Ssr!r" ,kc /n# can be defined by
changing from temporal to spatial spectra according
to the dispersion relation k=n" /c. In samples with
spectrally varying background properties, a more
complex relation can be employed and dispersion
compensated digitally [10,15]. Autocorrelation and
conjugate image artifacts arise because Ssr is not di-
rectly available, and S is therefore calculated from
the data IF.

By taking the two-dimensional Fourier transform
of S (indicated by a tilde) with respect to r", the most
general ISAM model [11] can be written as

S̃!Q",k# =$ L̃!Q",k,z#ei2kzz#̃!Q",z#dz, !4#

where kz= !k2−Q"
2#0.5 is the axial component of the

wave vector, # is the object susceptibility, and L̃ is de-
termined by the specific instrumentation used. When
the z dependence in the factor L̃ is neglected and it is
assumed that kz=k (an extreme form of the paraxial
approximation), the conventional OCT model is re-
covered in which the transverse and axial effects are
decoupled. That is, OCT reconstruction may be
implemented by an inverse Fourier transform of S
over k and a scaling of the z axis.

It has been shown that Eq. (4) can be inverted, that
is, the inverse scattering problem may be solved, by
Fourier resampling and linear filtering [8–11]. The
coherent nature of the data allows the scattered field,
not the scattered intensity, to be addressed directly
and thus allows computational refocusing at all axial
positions. Consequently, the spatial effects of ISAM
vary with the axial distance from the focal plane.
Spatially invariant resolution is achieved from data
obtained with a fixed focal plane, regardless of the
numerical aperture.

Since the ISAM processing is designed to refocus
the data only in the Rsr term, it can be expected to
defocus the shifted data in the conjugate and autocor-
relation terms. An example of this effect can be seen
in Fig. 1. The object shown is defined on a three-
dimensional grid with 2 $m spacing in r" and 4 $m
spacing in z. The object lies in a 1 mm%300 $m
%2 mm volume and consists of spherical shells of ra-
dii 700 $m (only partially visible) and 40 $m and 30
point scatterers in the x–z plane, one of which lies on
the interieror of the smaller sphere. The spherical
shells are described by #!r#=#0&!1#!%r−rp%−a#, where
a is the radius, rp determines the structure’s location,
&!1# is the one-dimensional delta function, and #0 rep-
resents an arbitrary unit of contrast from the back-
ground of zero susceptibility !n=1#. The point scat-
terers are described by #!r#=10#0&!3#!r−rp#. The data
were synthesized at 600 wavelengths between 780

and 820 nm by using a lens with numerical aperture
of 0.05. The transverse dimension r" was sampled on
a 4 $m grid over a 800 $m%200 $m area, and the
data were generated by using a full vectorial model
[11] with the assumption of isotropic scattering.

These simulations show the effects of OCT and
ISAM processing. When !0=0, the z=0 plane is at the
focal plane of the lens; however, these simulations
use c!0=−1 mm so that the data terms separate spa-
tially. The Rrr term is assumed to have been perfectly
removed, and the strength of the reference field is ad-
justed so that the contributing terms are visible on
the same scale. The ISAM algorithm used consists
only of the appropriate Fourier-domain resampling.

The simulation results confirm that ISAM refo-
cuses points that are out of focus in the traditional
OCT reconstruction and produces defocus in the con-
jugate and autocorrelation images. As the distance
from focus or the numerical aperture is increased,
the defocus in the autocorrelation is increased. Con-
versely, autocorrelation artifacts near the focal plane
are not blurred, as ISAM does not produce significant
change in regions that are already in focus.

The defocus of the autocorrelation term can also be
seen experimentally as shown in Fig. 2. A sample
consisting of beads of titanium dioxide, with an aver-
age diameter of 1 $m, embedded in a background of
silicone is imaged. A 0.05 numerical aperture (NA)
lens is used to collect wavelengths between 750 and
850 nm. The instrument used is that described in an

Fig. 1. (a) The x–z plane of the object and (b) the resulting
OCT and (c) ISAM images with c!0=−1 mm. The structures
in (a) have been broadened for display. In (b) and (c) the
contribution of Rsr is shown in blue, Rsr

* (conjugate image)
in green, and Rss (autocorrelation) in red. The color scale is
clipped at 10% of the maximum signal so that low-level de-
tail can be seen.

1442 OPTICS LETTERS / Vol. 32, No. 11 / June 1, 2007
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Autocorrelation mitigation

spheres have amplitude 1 and the point scatterers ampli-
tude 10, while the index of refraction has been normal-
ized to 1. The data were synthesized at 600 wavelengths
between 780nm and 820nm using a lens with numeri-
cal aperture of 0.05. The transverse dimension r|| was
sampled on a 4µm grid and the data generated using a
full vectorial model [19] with the assumption of isotropic
scattering. These simulations show the effects of OCT
and ISAM processing. When τ0 = 0 the z = 0 plane
is at the focal plane of the lens, however these simula-
tions use τ0 = −1mm so that the data terms separate
spatially. The ISAM processing can be seen to produce
a defocusing effect on the conjugate and autocorrelation
images. The Rrr term is assumed to have been perfectly
removed and the strength of the reference field is ad-
justed so that the contributing terms are visible on the
same scale. The ISAM algorithm used consists only of
the appropriate Fourier-domain resampling.

The simulation results confirm that ISAM refocuses
points that are out of focus in the traditional OCT re-
construction and produces defocus in the conjugate and
autocorrelation images. As the distance from focus or
the numerical aperture is increased, the defocus in the
autocorrelation is increased.

The defocus of the autocorrelation term can also be
seen experimentally as shown in Fig. 2. A sample con-
sisting beads of titanium dioxide, with an average di-
ameter of 1µm, embedded in a background of silicone is
imaged. A 0.05-numerical-aperture lens is used to collect
wavelengths between 750nm and 850nm. The focus lies
at approximately 1750µm, the reference plane is z = 0
and a glass coverslip extends from approximately 300µm
to 600µm. The OCT reconstruction shows point scatter-
ers near the focus, defocus away from that and a strong
autocorrelation effect above the sample and in the cover-
slip where no signal should, in principle, be seen. When
ISAM is applied the scatterers within the sample are
bought into focus and the autocorrelation artifacts are
defocused.

The simulations and experiments shown here have
been chosen to be well within the range of focusing pa-
rameters used in OCT today. ISAM obviates the trade
between depth of focus and resolution and so enables the
use of much higher NA optics without loss of depth of
imaging. The artifact defocusing seen here becomes more
pronounced as the NA is increased. This suggests that
when artifacts are problematic, there may be an advan-
tage to using high NA spectral domain systems with the
focus shifted away from the region of interest and using
the ISAM technique. Finally, a caveat is in order: Since
the ISAM approach produces coherent defocus of the ar-
tifacts, it is possible that in a sample with dense struc-
ture, the defocused features of the autocorrelation may
interfere with each other to produce new sharp features.
This is to be expected since removal of the autocorre-
lation is an ill-posed problem. The beginning of such a
phenomenon may be seen at the top of Fig. 2 (b) and in
Fig. 1 (d) near z = 0 where in a few places some fringes

Fig. 2. OCT (a) and ISAM (b) reconstructions from real
data. The color scale is clipped at 30% of the maximum
value so that low-level detail can be seen.

are seen to emerge in the overlap of defocussed points of
autocorrelation.

This work was supported in part by the National In-
stitutes of Health (NIBIB, 1 R01 EB00108 and 1 R21
EB005321, to S.A.B.), the National Science Foundation
(CAREER Award, 0239265, to P.S.C.) and the Beckman
Institute Graduate Fellowship Program (to T.S.R.)

The authors may be contacted by email at
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En face Comparison
Unprocessed data Reconstruction
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S̃(Q‖, k) =
∫

dz h̃αβ(Q‖, z0 − z; k)η̃αβ(Q‖, z)

General result for vector fields, high NA:

tics satisfy Maxwell’s equations only when the paraxial
approximation is invoked. A full vectorial model is devel-
oped to describe the effects of polarization on scattering
and propagation and also to account for high-angle fields.
In addition, no particular beam apodization is required by
the new model, meaning that various imaging modalities
that may not use a Gaussian beam can also be accommo-
dated in this new framework. Resulting analysis and nu-
merical experiments provide a verification of the approxi-
mate scalar model previously used to justify ISAM
processing. The ISAM method is shown to also be appli-
cable in the case of a tightly focused (high-NA) beam. Fur-
thermore, a means to reconcile paraxial (low-NA) [5] and
high-NA [6] limits is presented. Thus the new model adds
rigor to the theoretical framework of ISAM and also ex-
tends its realm of applicability.

The vector-based forward model is constructed using
the standard model for high-NA, vectorial focusing [11] of
the illumination field. Scattering from the object is then
modeled using the first Born approximation, and the re-
sulting field is propagated back through a lens to the de-
tector. It is shown that this model can be approximated in
a manner consistent with previous ISAM results. Simula-
tions confirm that the ISAM Fourier-resampling proce-
dure can still be expected to give excellent results in a
vectorial and/or high-angle framework. High-angle lenses
are shown to give the expected increase in resolution but
without any loss of depth of focus or signal level away
from the focal plane.

2. FORWARD MODEL
In this section the physics of the imaging system are mod-
eled. A general coherent microscope is considered, but one
particular configuration can be seen in Fig. 1. In this sec-
tion, interferometric microscopy is briefly discussed be-
fore the model is constructed. The construction proceeds
by first considering a focused illumination field, then the
response of the sample, followed by focused detection of
the scattered light. The consequences of using the same
lens for illumination and detection are also considered.

A. Interferometric Microscopy
OCT, which is a form of interferometric microscopy, mea-
sures the three-dimensional structure of a sample by scat-
tering broadband radiation from it. As shown in Fig. 1 a
focused beam of broadband light is scanned through a
sample, and the interferometric cross correlation between
the scattered signal and a reference signal is recorded at
a photodetector. By sampling the interferometric cross
correlation at many wavenumbers k, and by translating
the focus of the beam to many positions r!o" within the
sample, the three-dimensional structure of the sample
can be estimated.

For spectral-domain OCT [12,13], the detected inten-
sity I!r!o" ;k" for focal point r!o" and wavenumber k is

I!r!o";k" = #E!r"!k" + E!s"!r!o";k"#2 = #E!r"!k"#2 + #E!s"!r!o";k"#2

+ 2 Re$%E!r"!k"&HE!s"!r!o";k"', !1"

where E!r"!k" is the reference field, E!s"!r!o" ;k" is the scat-
tered field at the detector, and superscript H indicates the

Hermitian conjugation operator. A term can be identified
with the interferometric cross correlation, which is de-
noted by

S!r!o";k" = %E!r"!k"&HE!s"!r!o";k". !2"

Assuming the autocorrelation term #E!s"!r!o" ;k"#2 is negli-
gible, measurements of I!r!o" ;k" for one or more known
reference fields E!r"!k" allow the cross-correlation S!r!o" ;k"
to be inferred. The effects of nonnegligible autocorrelation
terms in ISAM imagery have been investigated in a sepa-
rate publication [14]. Because a single measurement of
I!r!o" ;k" can determine only Re$S!r!o" ;k"', the phase of the
reference may be varied by ! /2 to also measure
Im$S!r!o" ;k"' using phase-shifting interferometry [15,16].

The cross-correlation signal S!r!o" ;k" can be related to
the signal measured using time-domain OCT. Given that
k!"" is the dispersion relation of the sample medium, re-
lating temporal frequency " to spatial frequency k, the
temporal cross-correlation signal as a function of delay #
is

ST!r!o";#" =
1

2!
(

−$

$

S!r!o";k!"""ei"#d". !3"

By utilizing a procedure to correct the material dispersion
[17], the signal S!r!o" ;k" can be estimated from ST!r!o" ;#",
with a resampling coordinate change from " to k. In prac-
tice, however, typically only Re$ST!r!o" ;#"' is measured us-
ing time-domain OCT. The effect of this is that only the

Fig. 1. Basic illustration of a coherent microscope. A source
feeds an interferometer where one arm produces a reference field
and the other consists of illumination and detection from the
sample to be imaged. The reference arm may contain an adjust-
able delay element (represented here by movable mirrors). In
practical implementations, the Mach–Zehnder layout shown
here is often replaced by a Michelson interferometer using a
single objective lens. The sample is scanned mechanically or op-
tically in two or three dimensions.
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h̃αβ(−Q‖,−z; k) =

−4π2kµr |P (k)|2
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∫
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h̃αβ(−Q‖,−z; k) ∼

i4π3k
z µr |P (k)|2 ei2kz(Q‖/2)zF̂α

(
Q‖
2k

)
Ĝβ

(
Q‖
2k

)

h̃αβ(−Q‖,−z; k) ∼

−4π2kµr |P (k)|2 e
i[kz(q̄‖)+kz(Q‖−q̄‖)]z√
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Stationary phase (far from focus)

Peaked aperture functions (near focus)
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Sensors 2008, 8 6

Figure 3. An illustration of the differences between the data acquisition geometries in SAR and ISAM.
SAR involves a one-dimensional scan track, while ISAM scans over a plane. Unlike SAR beams, ISAM
fields include a region within the object that is in focus. Note that the same aperture is assumed for both
transmission and reflection in SAR; similarly the source is imaged onto the detector by the reference arm
in ISAM (see Fig. 1). The spectral bands and scan lengths also vary greatly between SAR and ISAM.
This figure is adapted from Ref. [38].

and temporal invariance, the response to an arbitrary transmitted waveform Êr(t) is then,

Ês(ρ, t) =

∫
d3r

∫
dt′ Êr(t

′)ĥ(r− ρ, t− t′)η(r). (1)

The linearity of the system is predicated on the assumption that multiple scattering effects are negligible—
this is often known as the first Born approximation REF. The system input Êr(t) is the transmitted radar
pulse for SAR systems and the temporal dependence of the optical plane wave incident on the objective
lens in ISAM. The object is described by the reflectivity function η(r) which, in terms of Maxwell’s
equations, can be identified as the susceptibility REF.

Note that in Eq. (1) the integration over r has been written in three dimensions, while it is a two-
dimensional integration for the SAR system. Throughout this work the ISAM analysis will be presented,
but the relationship between the two-dimensional SAR analysis and the three-dimensional ISAM analy-
sis is generally trivial.

It is often convenient to represent the temporal convolution seen in Eq. (1) in the Fourier domain so
that,

Es(ρ, ω) =

∫
d3r Er(ω)h(r− ρ, ω)η(r). (2)

Aˆ above a function denotes that it is represented in the space-time domain, while its absence denotes a
function represented in the space-frequency domain. The fact that η(r) is not a function of ω in Eq. (2) is
indicative of an implicit assumption made in Eq. (1). The assumption is that the imaged susceptibility is
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 From Gregory L. Charvat, LIncoln Labs.



45

Other bits of magic

• Fast spectral domain acquisition
• Phase drift correction
• Dispersion compensation
• Spectral reweighting
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Unstable phase in adjacent planes

in frame across frames

Phase fronts
x y
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Phase reference

Original Coverslip Corrected Coverslip

φ(k)
∂φ(k)
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kx



48

Phase correction using reference 
coverslip

Phase correctedPhase unstable

Ralston TS, Marks DL, Carney PS, Boppart SA. “Phase stability technique for inverse scattering in optical coherence 
tomography.” IEEE International Symposium on Biomedical Imaging, Arlington, VA, April 7, 2006.
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Cross-section from a 3D scan

Phase uncorrected Phase uncorrected 
reconstruction
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Cross-section from a 3D scan
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Cross-section from a 3D scan

Phase corrected Phase corrected 
reconstruction
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Spectrum correction in a 
Xenopus laevis (African frog) 

tadpole

No spectrum correction With spectrum correction

200µm 200µm
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Drift (thermal)

Time (min) 5 10

D
rif

t (
nm

)

720

870



52

Distorted point response
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Distorted point response
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Simulation adjusting the assumed NA
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Simulation adjusting the assumed focal plane
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2D projection of 3D scattering

3D beam scattering 
projected onto y=y0 
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Constant phase surfaces for 
a point scatterer
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High density sample

50µm 50µm

2 micron TiO2 suspended in silicone, SD-OCT
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Resampling in the Fourier space

iso − β lines

|Q||Q|

k
k

˜̃η(Q, β) =

[

K∗(Q, k, β)S̃(Q, k)

|K(Q, k, β)|2 + 2Nk/kz(Q/2)

]

k=
1

2

√
β2

−Q2
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Low Density Experiment

SD-OCT data

50µm

Unfiltered reconstruction
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Human Tissue – Adipose/Cancer


