The physics of obesity

Carson Chow
Laboratory of Biological Modeling, NIDDK, NIH

US obesity epidemic

Data from National Health and Nutrition Examination Survey (NHANES)

US obesity epidemic

1971-74

BMI

US obesity epidemic

1971-74
$\mathrm{BMI}=$ weight $/$ height 2

US obesity epidemic obese

1971-74
$\mathrm{BMI}=$ weight $/$ height 2

US obesity epidemic obese

1971-74
1976-80

US obesity epidemic obese

1971-74
1976-80
1988-94
$\mathrm{BMI}=$ weight $/$ height 2

US obesity epidemic

 obese

1971-74
1976-80
1988-94
2005-06
$\mathrm{BMI}=$ weight $/$ height 2

Conservation of energy

Conservation of energy

Food Intake

Conservation of energy

Food Intake

Energy expenditure

Conservation of energy

Food Intake

Energy storage

Energy expenditure

Conservation of energy

Food Intake

Energy storage

Energy expenditure

Δ Storage $=$ Intake - Expenditure

Energy flux

Rate of storage $=$ intake rate - expenditure rate

$$
\frac{d\left(\rho_{M} M\right)}{d t}=I-E
$$

$M=$ body mass

Energy density ρ_{M} converts energy to mass

Energy density

Fat
37.7 kJ/g

Carbs (glycogen)
$16.8 \mathrm{~kJ} / \mathrm{g}$
Protein
16.8 kJ/g

Water

Bone

Minerals

Multiple fuel sources

Macronutrient flux

$$
\frac{d\left(\rho_{M} M\right)}{d t}=I-E
$$

Macronutrient flux

$$
\rho_{F} \frac{d F}{d t}+\rho_{P} \frac{d P}{d t}+\rho_{G} \frac{d G}{d t}=I-E
$$

Macronutrient flux

$$
\rho_{F} \frac{d F}{d t}+\rho_{P} \frac{d P}{d t}+\rho_{G} \frac{d G}{d t}=I_{F}+I_{C}+I_{P}-E
$$

Macronutrient flux

$$
\begin{aligned}
& \rho_{F} \frac{d F}{d t} \\
& \rho_{G} \frac{d G}{d t} \\
& \rho_{P} \frac{d P}{d t}
\end{aligned}
$$

$$
=I_{F}+I_{C}+I_{P}-E
$$

Macronutrient flux

$$
\begin{aligned}
& \rho_{F} \frac{d F}{d t}=I_{F} \\
& \rho_{G} \frac{d G}{d t}=I_{C} \quad-E \\
& \rho_{P} \frac{d P}{d t}=I_{P}
\end{aligned}
$$

Macronutrient flux

$$
\begin{aligned}
\rho_{F} \frac{d F}{d t} & =I_{F}-f_{F} E \\
\rho_{G} \frac{d G}{d t} & =I_{C}-f_{C} E \\
\rho_{P} \frac{d P}{d t} & =I_{P}-\left(1-f_{F}-f_{C}\right) E
\end{aligned}
$$

Macronutrient flux

$$
\begin{aligned}
& \rho_{F} \frac{d F}{d t}=I_{F}-f_{F} E \\
& \rho_{G} \frac{d G}{d t}=I_{C}-f_{C} E \\
& \rho_{P} \frac{d P}{d t}=I_{P}-\left(1-f_{F}-f_{C}\right) E
\end{aligned}
$$

$f_{F}=$ fraction of fat utilized $f_{C}=$ fraction of carbs utilized

Macronutrient flux

$$
\begin{aligned}
& \rho_{F} \frac{d F}{d t}=I_{F}-f_{F} E \\
& \rho_{G} \frac{d G}{d t}=I_{C}-f_{C} E \\
& \rho_{P} \frac{d P}{d t}=I_{P}-\left(1-f_{F}-f_{C}\right) E
\end{aligned}
$$

$f_{F}=$ fraction of fat utilized $f_{C}=$ fraction of carbs utilized

Reduction to $2 D$

$$
\begin{aligned}
& \rho_{F} \frac{d F}{d t}=I_{F}-f_{F} E \\
& \rho_{G} \frac{d G}{d t}=I_{C}-f_{C} E \\
& \rho_{P} \frac{d P}{d t}=I_{P}-\left(1-f_{F}-f_{C}\right) E
\end{aligned}
$$

$f_{F}=$ fraction of fat utilized $f_{C}=$ fraction of carbs utilized

Reduction to $2 D$

$$
\begin{aligned}
\rho_{F} \frac{d F}{d t} & =I_{F}-f_{F} E \\
\rho_{G} \frac{d G}{d t} & =I_{C}-f_{C} E \\
\rho_{P} \frac{d P}{d t} & =I_{P}-\left(1-f_{F}-f_{C}\right) E
\end{aligned}
$$

Glycogen supply small, ~ fixed on long time scales

Reduction to $2 D$

$$
\begin{aligned}
\rho_{F} \frac{d F}{d t} & =I_{F}-f_{F} E \\
\rho_{G} \frac{d G}{d t} & =I_{C}-f_{C} E=0 \\
\rho_{P} \frac{d P}{d t} & =I_{P}-\left(1-f_{F}-f_{C}\right) E
\end{aligned}
$$

Glycogen supply small, ~ fixed on long time scales

Reduction to $2 D$

$$
\begin{aligned}
& \rho_{F} \frac{d F}{d t}=I_{F}-f_{F} E \\
& f_{C}=\frac{I_{C}}{E} \\
& \rho_{P} \frac{d P}{d t}=I_{P}-\left(1-f_{F}-f_{C}\right) E
\end{aligned}
$$

Glycogen supply small, ~ fixed on long time scales

Reduction to $2 D$

$$
\rho_{F} \frac{d F}{d t}=I_{F}-f_{F} E
$$

$$
\rho_{P} \frac{d P}{d t}=I_{P}-\left(1-f_{F}-\frac{I_{C}}{E}\right) E
$$

Glycogen supply small, ~ fixed on long time scales

Reduction to $2 D$

$$
\rho_{F} \frac{d F}{d t}=I_{F}-f_{F} E
$$

$$
\rho_{P} \frac{d P}{d t}=I_{P}-\left(1-f_{F}\right) E+I_{C}
$$

Glycogen supply small, ~ fixed on long time scales

Reduction to $2 D$

$$
\begin{aligned}
& \rho_{F} \frac{d F}{d t}=I_{F}-f_{F} E \\
& \rho_{P} \frac{d P}{d t}=I_{P}+I_{C}-\left(1-f_{F}\right) E
\end{aligned}
$$

Glycogen supply small, ~ fixed on long time scales

Reduction to $2 D$

$$
\begin{aligned}
& \rho_{F} \frac{d F}{d t}=I_{F}-f_{F} E \\
& \rho_{P} \frac{d P}{d t}=I_{P}+I_{C}-\left(1-f_{F}\right) E
\end{aligned}
$$

Divide mass into lean and fat $\quad M=L+F$

Reduction to $2 D$

$$
\begin{aligned}
& \rho_{F} \frac{d F}{d t}=I_{F}-f_{F} E \\
& \rho_{P} \frac{d P}{d t}=I_{P}+I_{C}-\left(1-f_{F}\right) E
\end{aligned}
$$

Divide mass into lean and fat $\quad M=L+F$
Change in L due to change $\quad \frac{d P}{d t}=\frac{1}{1+h_{P}} \frac{d L}{d t}$
in P and water

Reduction to $2 D$

$$
\begin{aligned}
\rho_{F} \frac{d F}{d t} & =I_{F}-f_{F} E \\
\frac{\rho_{P}}{1+h_{P}} \frac{d L}{d t} & =I_{P}+I_{C}-\left(1-f_{F}\right) E
\end{aligned}
$$

Divide mass into lean and fat $\quad M=L+F$

Reduction to $2 D$

$$
\begin{aligned}
\rho_{F} \frac{d F}{d t} & =I_{F}-f_{F} E \\
\frac{\rho_{P}}{1+h_{P}} \frac{d L}{d t} & =I_{P}+I_{C}-\left(1-f_{F}\right) E
\end{aligned}
$$

Divide mass into lean and fat $\quad M=L+F$

Lean intake $=$ carbs + protein $\quad I_{P}+I_{C}=I_{L}$

Reduction to $2 D$

$$
\begin{aligned}
\rho_{F} \frac{d F}{d t} & =I_{F}-f_{F} E \\
\frac{\rho_{P}}{1+h_{P}} \frac{d L}{d t} & =I_{L} \quad-\left(1-f_{F}\right) E
\end{aligned}
$$

Divide mass into lean and fat $\quad M=L+F$

Body composition model

$$
\begin{aligned}
\rho_{F} \frac{d F}{d t} & =I_{F}-f E \\
\rho_{L} \frac{d L}{d t} & =I_{L}-(1-f) E
\end{aligned}
$$

Body composition model

$$
\begin{aligned}
& \rho_{F} \frac{d F}{d t}=I_{F}-f E \\
& \rho_{L} \frac{d L}{d t}=I_{L}-(1-f) E \\
& \rho_{L}=\rho_{P} /\left(1+h_{P}\right)
\end{aligned}
$$

h_{p} protein hydration coefficient

Body composition model

$$
\begin{aligned}
& \rho_{F} \frac{d F}{d t}=I_{F}-f E \\
& \rho_{L} \frac{d L}{d t}=I_{L}-(1-f) E \\
& \rho_{L}=\rho_{P} /\left(1+h_{P}\right)
\end{aligned}
$$

h_{p} protein hydration coefficient
f is fraction of energy use that is fat

Body composition model

$$
\begin{aligned}
& \rho_{F} \frac{d F}{d t}=I_{F}-f E \\
& \rho_{L} \frac{d L}{d t}=I_{L}-(1-f) E \\
& \rho_{L}=\rho_{P} /\left(1+h_{P}\right)
\end{aligned}
$$

h_{p} protein hydration coefficient
f is fraction of energy use that is fat
E and f are functions of F and L

Dynamical systems

Infer global dynamics from local information

Dynamical systems

$$
\frac{d x}{d t}=x(1-x)
$$

Dynamical systems

$$
\frac{d x}{d t}=x(1-x)=0
$$

Fixed points

Dynamical systems

$$
\begin{gathered}
\frac{d x}{d t}=x(1-x)=0 \quad \text { Fixed points } \\
x=0,1
\end{gathered}
$$

Dynamical systems

$$
\begin{gathered}
\frac{d x}{d t}=x(1-x)=0 \quad \text { Fixed points } \\
x=0,1
\end{gathered}
$$

Represent geometrically in phase plane

Dynamical systems

$$
\frac{d x}{d t}=x(1-x)=0
$$

Fixed points

$$
x=0,1
$$

Represent geometrically in phase plane

Dynamical systems

$$
\begin{gathered}
\frac{d x}{d t}=x(1-x)=0 \quad \text { Fixed points } \\
x=0,1
\end{gathered}
$$

Represent geometrically in phase plane

Dynamical systems

$$
\begin{gathered}
\frac{d x}{d t}=x(1-x)=0 \quad \text { Fixed points } \\
x=0,1
\end{gathered}
$$

Represent geometrically in phase plane

vector field

Fixed points

$$
\begin{gathered}
\rho_{F} \frac{d F}{d t}=I_{F}-f E \\
\rho_{L} \frac{d L}{d t}=I_{L}-(1-f) E
\end{gathered}
$$

Fixed points

vector
field $\left\{\begin{array}{c}\rho_{F} \frac{d F}{d t}=I_{F}-f E \\ \rho_{L} \frac{d L}{d t}=I_{L}-(1-f) E\end{array}\right.$

Fixed points

Nullclines
vector
field $\left\{\begin{array}{cc}\rho_{F} \frac{d F}{d t}=I_{F}-f E=0 & \mathrm{~L} \text { - Nullcline } \\ \rho_{L} \frac{d L}{d t}=I_{L}-(1-f) E=0 & \text { F - Nullcline }\end{array}\right.$

Fixed points

Nullclines
vector
field $\left\{\begin{array}{cc}\rho_{F} \frac{d F}{d t}=I_{F}-f E=0 & \mathrm{~L} \text { - Nullcline } \\ \rho_{L} \frac{d L}{d t}=I_{L}-(1-f) E=0 & \text { F - Nullcline }\end{array}\right.$

$$
E(F, L)=I
$$

Fixed points

Nullclines
vector
field $\left\{\begin{array}{cc}\rho_{F} \frac{d F}{d t}=I_{F}-f E=0 & \mathrm{~L} \text { - Nullcline } \\ \rho_{L} \frac{d L}{d t}=I_{L}-(1-f) E=0 & \text { F - Nullcline }\end{array}\right.$

$$
E(F, L)=I \quad \text { energy balance }
$$

Fixed points

Nullclines
vector
field $\left\{\begin{array}{cc}\rho_{F} \frac{d F}{d t}=I_{F}-f E=0 & \mathrm{~L} \text { - Nullcline } \\ \rho_{L} \frac{d L}{d t}=I_{L}-(1-f) E=0 & \text { F - Nullcline }\end{array}\right.$

$$
E(F, L)=I \quad \text { energy balance }
$$

$$
f(F, L)=\frac{I_{F}}{I}
$$

Fixed points

Nullclines
vector
field $\left\{\begin{array}{cc}\rho_{F} \frac{d F}{d t}=I_{F}-f E=0 & \mathrm{~L} \text { - Nullcline } \\ \rho_{L} \frac{d L}{d t}=I_{L}-(1-f) E=0 & \text { F - Nullcline }\end{array}\right.$

$$
\begin{array}{ll}
E(F, L)=I & \text { energy balance } \\
f(F, L)=\frac{I_{F}}{I} & \text { fat balance }
\end{array}
$$

Phase plane

L

Phase plane

L
Fate of all initial conditions is known

Possible phase plane dynamics

L
Fixed point

L
Multiple fixed points

Line attractor

Limit cycle

Chow and Hall, PLoS Comp Bio,4: e1000045, 2008

Indirect calorimetry

Carbohydrates: $\quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Fat:
$\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2}+23 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+16 \mathrm{H}_{2} \mathrm{O}$

Protein: $\mathrm{C}_{72} \mathrm{H}_{112} \mathrm{~N}_{2} \mathrm{O}_{22} \mathrm{~S}+77 \mathrm{O}_{2} \rightarrow 63 \mathrm{CO}_{2}+38 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{3}+9 \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$

Flux of CO_{2} and $\mathrm{O}_{2} \Rightarrow \mathrm{E}$

Energy expenditure rate E

Basal metabolic rate (BMR)
Physical activity

Energy expenditure rate E

Basal metabolic rate (BMR)
Physical activity
$E \sim 10 \mathrm{MJ} /$ day

Energy expenditure rate E

Basal metabolic rate (BMR)
Physical activity
$E \sim 10 \mathrm{MJ} /$ day $\sim 115 \mathrm{~W}$

Energy expenditure rate E

Basal metabolic rate (BMR)
Physical activity
$E \sim 10 \mathrm{MJ} /$ day $\sim 115 \mathrm{~W} \sim 3 \mathrm{KWH} /$ day

Basal metabolic rate

Nielson, 2000

Basal metabolic rate

Nielson, 2000
e.g. $B M R(M J / d a y)=0.9 L(\mathrm{~kg})+0.01 F(\mathrm{~kg})+1.1$

Physical activity

Energy due to PA \propto Mass

$$
E_{P A}=a M=a(L+F)
$$

a ranges from 0 to $0.1 \mathrm{MJ} / \mathrm{kg} / \mathrm{day}$

Physical activity

Energy due to PA \propto Mass

$$
E_{P A}=a M=a(L+F)
$$

a ranges from 0 to $0.1 \mathrm{MJ} / \mathrm{kg} / \mathrm{day}$
$\therefore E$ is linear in F and L

$$
E(F, L)=b F+c L+d=I
$$

$$
E(F, L)=b F+c L+d=I
$$

Single fixed point is generic

$$
E(F, L)=b F+c L+d=I
$$

Multi-stability or limit cycle requires fine tuning

$$
E(F, L)=b F+c L+d=I
$$

Line attractor requires special form

$$
E(F, L)=b F+c L+d=I
$$

Line attractor requires special form

The problem with f

In energy balance, f reflects diet

The problem with f

In energy balance, f reflects diet $\quad f(F, L)=\frac{I_{F}}{I}$

The problem with f

In energy balance, f reflects diet $\quad f(F, L)=\frac{I_{F}}{I}$

Must invert in dynamic situation

$$
\begin{aligned}
\rho_{F} \frac{d F}{d t} & =I_{F}-f E \\
\rho_{L} \frac{d L}{d t} & =I_{L}-(1-f) E
\end{aligned}
$$

Body composition

F
Forbes, 2000

Body composition

F
Forbes, 2000

Apply Forbes law to model

$$
\begin{aligned}
\frac{d F}{d L} & =\frac{F}{10.4} \\
\rho_{F} \frac{d F}{d t} & =\left(I_{F}-f E\right) \\
\rho_{L} \frac{d L}{d t} & =\left(I_{L}-(1-f) E\right)
\end{aligned}
$$

Apply Forbes law to model

$$
\begin{aligned}
\frac{d F}{d L} & =\frac{F}{10.4} \\
d F & =\left(I_{F}-f E\right) \frac{d t}{\rho_{F}} \\
\rho_{L} \frac{d L}{d t} & =\left(I_{L}-(1-f) E\right)
\end{aligned}
$$

Apply Forbes law to model

$$
\begin{aligned}
& \frac{d F}{d L}=\frac{F}{10.4} \\
& d F=\left(I_{F}-f E\right) \frac{d t}{\rho_{F}} \\
& d L=\left(I_{L}-(1-f) E\right) \frac{d t}{\rho_{L}}
\end{aligned}
$$

Apply Forbes law to model

$$
\begin{aligned}
\frac{d F}{d L} & =\frac{F}{10.4} \\
\frac{d F}{d L} & =\frac{\left(I_{F}-f E\right) \rho_{L}}{\left(I_{L}-(1-f) E\right) \rho_{F}}
\end{aligned}
$$

Apply Forbes law to model

$$
\frac{\left(I_{F}-f E\right) \rho_{L}}{\left(I_{L}-(1-f) E\right)^{\rho_{F}}}=\frac{F}{10.4}
$$

Apply Forbes law to model

$$
\begin{array}{r}
\frac{\left(I_{F}-f E\right) \rho_{L}}{\left(I_{L}-(1-f) E\right)^{\rho_{F}}}=\frac{F}{10.4} \\
f=\frac{I_{F}-(1-p)(I-E)}{E} \quad p=\frac{1}{1+\frac{\rho_{F}}{\rho_{L}} \frac{F}{10.4}}
\end{array}
$$

Apply Forbes law to model

$$
\frac{\left(I_{F}-f E\right) \rho_{L}}{\left(I_{L}-(1-f) E\right)^{\rho_{F}}}=\frac{F}{10.4}
$$

Matches data

Hall, Bain, and Chow, Int J. Obesity, (2007)

Weight and fat loss

Hall, Bain, and Chow, Int J. Obesity, (2007)

Energy partition model

$$
\begin{aligned}
\rho_{F} \frac{d F}{d t} & =I_{F}-f E \\
\rho_{L} \frac{d L}{d t} & =I_{L}-(1-f) E
\end{aligned}
$$

$$
f=\frac{I_{F}-(1-p)(I-E)}{E}
$$

Energy partition model

$$
\begin{aligned}
\rho_{F} \frac{d F}{d t} & =I_{F}-\frac{I_{F}-(1-p)(I-E)}{E} E \\
\rho_{L} \frac{d L}{d t} & =I_{L}-(1-f) E
\end{aligned}
$$

Energy partition model

$$
\begin{aligned}
\rho_{F} \frac{d F}{d t} & =I_{F}-I_{F}+(1-p)(I-E) \\
\rho_{L} \frac{d L}{d t} & =I_{L}-(1-f) E
\end{aligned}
$$

Energy partition model

$$
\begin{aligned}
\rho_{F} \frac{d F}{d t} & =(1-p)(I-E) \\
\rho_{L} \frac{d L}{d t} & =I_{L}-(1-f) E
\end{aligned}
$$

Energy partition model

$$
\begin{aligned}
\rho_{F} \frac{d F}{d t} & =(1-p)(I-E) \\
\rho_{L} \frac{d L}{d t} & =p(I-E)
\end{aligned}
$$

Energy partition model

$$
\begin{aligned}
\rho_{F} \frac{d F}{d t} & =(1-p)(I-E) \\
\rho_{L} \frac{d L}{d t} & =p(I-E)
\end{aligned}
$$

Steady state is line attractor $\quad E(F, L)=I$

Energy partition model

$$
\begin{aligned}
\rho_{F} \frac{d F}{d t} & =(1-p)(I-E) \\
\rho_{L} \frac{d L}{d t} & =p(I-E)
\end{aligned}
$$

Steady state is line attractor $\quad E(F, L)=I$

Almost all previous models use energy partition

Consequences of line attractor

$$
E(F, L)=I
$$

F

Consequences of line attractor

possible histories

F

Consequences of line attractor

F

Consequences of line attractor

F

Consequences of line attractor

constant weight $F+L=M$
F

Effect of perturbations

L

L
fixed point

Numerical example

$$
\begin{array}{ll}
\rho_{F} \frac{d F}{d t}=I_{F}-f E & \rho_{F}=37.7 \mathrm{MJ} / \mathrm{kg} \\
\rho_{L} \frac{d L}{d t}=I_{L}-(1-f) E & \rho_{L}=7.6 \mathrm{MJ} / \mathrm{kg} \\
& \\
E(M J / D a y)=0.14 L(\mathrm{~kg})+0.05 F(\mathrm{~kg})+1.55 &
\end{array}
$$

Numerical example

$$
\begin{array}{ll}
\rho_{F} \frac{d F}{d t}=I_{F}-f E & \rho_{F}=37.7 \mathrm{MJ} / \mathrm{kg} \\
\rho_{L} \frac{d L}{d t}=I_{L}-(1-f) E & \rho_{L}=7.6 \mathrm{MJ} / \mathrm{kg} \\
E(M J / D a y)=0.14 L(\mathrm{~kg})+0.05 F(\mathrm{~kg})+1.55 & \\
f=\frac{I_{F}}{E}-(1-p) \frac{I-E}{E}-\frac{\psi}{E} &
\end{array}
$$

Numerical example

$$
\begin{array}{ll}
\rho_{F} \frac{d F}{d t}=(1-p)(I-E)+\psi & \rho_{F}=37.7 \mathrm{MJ} / \mathrm{kg} \\
\rho_{L} \frac{d L}{d t}=p(I-E)-\psi & \rho_{L}=7.6 \mathrm{MJ} / \mathrm{kg} \\
& \\
E(M J / D a y)=0.14 L(\mathrm{~kg})+0.05 F(\mathrm{~kg})+1.55 &
\end{array}
$$

Numerical example

$$
\begin{array}{ll}
\rho_{F} \frac{d F}{d t}=(1-p)(I-E)+\psi & \rho_{F}=37.7 \mathrm{MJ} / \mathrm{kg} \\
\rho_{L} \frac{d L}{d t}=p(I-E)-\psi & \rho_{L}=7.6 \mathrm{MJ} / \mathrm{kg} \\
& \\
E(M J / D a y)=0.14 L(\mathrm{~kg})+0.05 F(\mathrm{~kg})+1.55 &
\end{array}
$$

Forbes: $\quad p=2 /(2+F)$

Numerical example

$$
\begin{array}{ll}
\rho_{F} \frac{d F}{d t}=(1-p)(I-E)+\psi & \rho_{F}=37.7 \mathrm{MJ} / \mathrm{kg} \\
\rho_{L} \frac{d L}{d t}=p(I-E)-\psi & \rho_{L}=7.6 \mathrm{MJ} / \mathrm{kg} \\
& \\
E(M J / D a y)=0.14 L(\mathrm{~kg})+0.05 F(\mathrm{~kg})+1.55 &
\end{array}
$$

Forbes: $\quad p=2 /(2+F)$

$$
\psi=\left\{\begin{array}{l}
0.05(F-0.4 \exp (L / 10.4)) / F \\
0
\end{array}\right.
$$

Numerical example

$$
\begin{array}{ll}
\rho_{F} \frac{d F}{d t}=(1-p)(I-E)+\psi & \rho_{F}=37.7 \mathrm{MJ} / \mathrm{kg} \\
\rho_{L} \frac{d L}{d t}=p(I-E)-\psi & \rho_{L}=7.6 \mathrm{MJ} / \mathrm{kg} \\
& \\
E(M J / D a y)=0.14 L(\mathrm{~kg})+0.05 F(\mathrm{~kg})+1.55 &
\end{array}
$$

Forbes: $\quad p=2 /(2+F)$

$$
\psi=\left\{\begin{array}{c}
0.05(F-0.4 \exp (L / 10.4)) / F \\
0 \longleftarrow \text { invariant manifold }
\end{array}\right.
$$

Mean US body weight

Data from National Health and Nutrition Examination Survey (NHANES)

Mean US body weight

Data from National Health and Nutrition Examination Survey (NHANES)

Mean US body weight

Data from National Health and Nutrition Examination Survey (NHANES)

Mean US body weight

Data from National Health and Nutrition Examination Survey (NHANES)

Mean US body weight

Data from National Health and Nutrition Examination Survey (NHANES)

Mean US body weight

Data from National Health and Nutrition Examination Survey (NHANES)

U.S. Food Supply

U.S. Food Supply

Hall, Guo, Dore, Chow. PLoS One (2009)

U.S. Food Supply

FAO Food Supply

U.S. Food Supply

U.S. Food Supply

U.S. Food Waste

Hall, Guo, Dore, Chow. PLoS One (2009)

U.S. Food Waste

Hall, Guo, Dore, Chow. PLoS One (2009)

One dimensional models

Energy partition models are effectively $1 D$

$$
\begin{aligned}
& \rho_{F} \frac{d F}{d t}=(1-p)(I-E) \\
& \rho_{L} \frac{d L}{d t}=p(I-E)
\end{aligned}
$$

F

One dimensional models

Energy partition models are effectively $1 D$

$$
\rho_{L} \frac{d L}{d t}+\rho_{F} \frac{d F}{d t}=I-E
$$

F

One dimensional models

Energy partition models are effectively $1 D$

$$
\begin{gathered}
\rho_{L} \frac{d L}{d t}+\rho_{F} \frac{d F}{d t}=I-E \\
L \approx m F+b
\end{gathered}
$$

F

One dimensional models

Energy partition models are effectively $1 D$

$$
\begin{array}{rl}
\rho_{L} \frac{d L}{d t}+\rho_{F} \frac{d F}{d t}=I-E \\
L & L m F+b \quad F=M-L
\end{array}
$$

One dimensional models

Energy partition models are effectively $1 D$

$$
\begin{array}{cc}
\rho_{L} \frac{d L}{d t}+\rho_{F} \frac{d F}{d t}=I-E & L \\
L \approx m F+b & F=M-L \\
F=\frac{M-b}{\rho_{L}} \frac{\rho_{F}}{p} \\
F & F
\end{array}
$$

One dimensional models

Energy partition models are effectively $1 D$

$$
\begin{array}{rl}
\rho_{L} \frac{d L}{d t}+\rho_{F} \frac{d F}{d t}=I-E & L \\
L & \approx m F+b \\
L & F=M-L \\
\hline \frac{m M+b}{\rho_{L}} \frac{\rho_{F}}{1+m} & F=\frac{M-b}{1+m}
\end{array}
$$

One dimensional models

$$
\rho_{M} \frac{d M}{d t}=I-\epsilon M-b
$$

$$
\rho_{M}=\frac{\rho_{F} \rho_{L}}{\rho_{L}+\left(\rho_{F}-\rho_{L}\right) p}
$$

One dimensional models

$$
\rho_{M} \frac{d M}{d t}=I-\epsilon M-b \quad \quad \rho_{M}=\frac{\rho_{F} \rho_{L}}{\rho_{L}+\left(\rho_{F}-\rho_{L}\right) p}
$$

Leaky integrator

One dimensional models

$$
\rho_{M} \frac{d M}{d t}=I-\epsilon M-b \quad \rho_{M}=\frac{\rho_{F} \rho_{L}}{\rho_{L}+\left(\rho_{F}-\rho_{L}\right) p}
$$

Leaky integrator

$$
C \frac{d V}{d t}=I-\frac{1}{R} V
$$

Steady state

$$
\begin{gathered}
\rho_{M} \frac{d M}{d t}=I-\epsilon M-b=0 \\
M=(I-b) / \epsilon \quad \Delta M \sim \frac{1}{\epsilon} \Delta I
\end{gathered}
$$

Steady state

$$
\begin{gathered}
\rho_{M} \frac{d M}{d t}=I-\epsilon M-b=0 \\
M=(I-b) / \epsilon \quad \Delta M \sim \frac{1}{\epsilon} \Delta I
\end{gathered}
$$

ε decreases with weight and increases with activity

Steady state

$$
\begin{gathered}
\rho_{M} \frac{d M}{d t}=I-\epsilon M-b=0 \\
M=(I-b) / \epsilon \quad \Delta M \sim \frac{1}{\epsilon} \Delta I
\end{gathered}
$$

ε decreases with weight and increases with activity
$\varepsilon \sim 0.1 \mathrm{MJ} / \mathrm{kg} /$ day or $23 \mathrm{kcal} / \mathrm{kg} /$ day

Steady state

$$
\begin{gathered}
\rho_{M} \frac{d M}{d t}=I-\epsilon M-b=0 \\
M=(I-b) / \epsilon \quad \Delta M \sim \frac{1}{\epsilon} \Delta I
\end{gathered}
$$

ε decreases with weight and increases with activity
$\varepsilon \sim 0.1 \mathrm{MJ} / \mathrm{kg} /$ day or $23 \mathrm{kcal} / \mathrm{kg} /$ day
Extra $\sim 23 \mathrm{kcal} /$ day is an extra kg

Time Constant

$$
\rho_{M} \frac{d M}{d t}=I-\epsilon M-b
$$

Time constant (half-life/.69) to reach steady state:

$$
\tau=\rho_{M} / \epsilon
$$

Time Constant

$$
\rho_{M} \frac{d M}{d t}=I-\epsilon M-b
$$

Time constant (half-life/.69) to reach steady state:

$$
\tau=\rho_{M} / \epsilon
$$

$\rho_{\mathrm{M}} \sim 7700 \mathrm{kcal} / \mathrm{kg}, \varepsilon \sim 23 \mathrm{kcal} / \mathrm{day}, \tau \sim 1$ year

Time Constant

$$
\rho_{M} \frac{d M}{d t}=I-\epsilon M-b
$$

Time constant (half-life/.69) to reach steady state:

$$
\tau=\rho_{M} / \epsilon
$$

$\rho_{\mathrm{M}} \sim 7700 \mathrm{kcal} / \mathrm{kg}, \varepsilon \sim 23 \mathrm{kcal} / \mathrm{day}, \tau \sim 1$ year
τ increases with weight and decrease with activity

Intake precision

To maintain weight to 2 kg requires controlling intake to $\sim 50 \mathrm{kcal} /$ day, (out of $\sim 2500 \mathrm{kcal} /$ day)

Intake precision

To maintain weight to 2 kg requires controlling intake to $\sim 50 \mathrm{kcal} /$ day, (out of $\sim 2500 \mathrm{kcal} / \mathrm{day}$)

Cookie is ~ 150 kcal

Intake precision

To maintain weight to 2 kg requires controlling intake to $\sim 50 \mathrm{kcal} /$ day, (out of $\sim 2500 \mathrm{kcal} / \mathrm{day}$)

Cookie is $\sim 150 \mathrm{kcal}$

Paradox?

Intake precision

To maintain weight to 2 kg requires controlling intake to $\sim 50 \mathrm{kcal} /$ day, (out of $\sim 2500 \mathrm{kcal} /$ day $)$

Cookie is $\sim 150 \mathrm{kcal}$

Paradox? No, because of long time constant

Example daily intake energy

Beltsville one year intake study (courtesy of W. Rumpler)

$C V \sim 1 \%$

Intake varations have little effect on weight

Time varying intake

$$
I(t)=\bar{I}+\eta(t)
$$

$$
\left\langle\eta(t) \eta\left(t^{\prime}\right)\right\rangle=\sigma^{2} \delta\left(t-t^{\prime}\right)
$$

$$
\rho_{M} \frac{d M}{d t}=\bar{I}-b-\epsilon M+\eta(t)
$$

Noisy intake

White noise

Ornstein-Uhlenbeck process
$C V(I)$ is $\sigma / I, \quad$ find $C V(M)$

$$
\begin{array}{cl}
\left\langle(M(t)-\langle M\rangle)^{2}\right\rangle=\frac{\sigma^{2}}{2 \rho_{M} \epsilon} & \langle M\rangle=\frac{I-b}{\epsilon} \\
\mathrm{CV}(M)=\frac{1}{\sqrt{2 \tau}} \frac{\bar{I}}{I-b} \mathrm{CV}(\bar{I}) & \tau=\rho_{M} / \epsilon
\end{array}
$$

$$
\begin{array}{ll}
\left\langle(M(t)-\langle M\rangle)^{2}\right\rangle=\frac{\sigma^{2}}{2 \rho_{M} \epsilon} & \langle M\rangle=\frac{I-b}{\epsilon} \\
\operatorname{CV}(M)=\frac{1}{\sqrt{2 \tau}} \frac{\bar{I}}{I-b} \mathrm{CV}(\bar{I}) & \tau=\rho_{M} / \epsilon
\end{array}
$$

$$
\begin{array}{ll}
\left\langle(M(t)-\langle M\rangle)^{2}\right\rangle=\frac{\sigma^{2}}{2 \rho_{M} \epsilon} & \langle M\rangle=\frac{I-b}{\epsilon} \\
\mathrm{CV}(M)=\frac{1}{\sqrt{2 \tau}} \frac{\bar{I}}{I-b} \mathrm{CV}(\bar{I}) & \tau=\rho_{M} / \epsilon
\end{array}
$$

For $\sqrt{2 \tau} \sim 30, \bar{I} \sim 2500, b \sim 600$

$$
\begin{array}{ll}
\left\langle(M(t)-\langle M\rangle)^{2}\right\rangle=\frac{\sigma^{2}}{2 \rho_{M} \epsilon} & \langle M\rangle=\frac{I-b}{\epsilon} \\
\operatorname{CV}(M)=\frac{1}{\sqrt{2 \tau}} \frac{\bar{I}}{I-b} \operatorname{CV}(\bar{I}) & \tau=\rho_{M} / \epsilon
\end{array}
$$

For $\sqrt{2 \tau} \sim 30, \bar{I} \sim 2500, b \sim 600$
$C V(M)$ reduced by factor of $15-20$ vs $C V(I)$

Simulated Beltsville data 10 years

$\mathrm{CV} \sim 23 \%$

CV $\sim 2 \%$

Correlations increase fluctuations

Correlations increase fluctuations

Longer correlations \Rightarrow higher BMI
Periwal and Chow, AJP:EM, 291:929-36 (2006)

Acknowledgments

Kevin Hall
Vipul Periwal
Heather Bain
Michael Dore
Juen Guo

