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Food Intake

Energy 
expenditureEnergy storage

∆Storage = Intake - Expenditure

Conservation of energy
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Rate of storage = intake rate - expenditure rate

Energy density ρM converts energy to mass

Energy flux

M = body mass 

d(ρMM)
dt

= I − E
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Energy density

Fat

Bone

Water

Protein

Carbs 
(glycogen)

Minerals

37.7 kJ/g

16.8 kJ/g

16.8 kJ/g
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Multiple fuel sources

Fat
Carbs/

glycogen Protein

IF IC IP

E
F G P

Macronutrients

{
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I − E=

Macronutrient flux

d(ρMM)
dt
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I − E=

Macronutrient flux

ρF
dF

dt
ρG

dG

dt
ρP

dP

dt
+ +
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= E

Macronutrient flux

ρF
dF
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ρG

dG

dt
ρP

dP
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+ + IF + IC + IP −
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−(1− fF fC− )E

fCE

fF E

=

Macronutrient flux

ρF
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dt
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−(1− fF fC− )E

fCE

fF E

=

Macronutrient flux

fF = fraction of fat utilized

ρF
dF

dt

ρG
dG

dt

ρP
dP

dt

IF

IC

IP

=

=

−

−

fC = fraction of carbs utilized
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−(1− fF

Macronutrient flux

ρF
dF

dt

ρP
dP

dt

= IF − fF E

fC−

IC − fCEρG
dG

dt
=

)E= IP

fC = fraction of carbs utilized

fF = fraction of fat utilized
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−(1− fF

Reduction to 2D
ρF

dF

dt

ρP
dP

dt

= IF − fF E

fC−

IC − fCEρG
dG

dt
=

)E= IP

fC = fraction of carbs utilized

fF = fraction of fat utilized
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−(1− fF

Reduction to 2D
ρF

dF

dt

ρP
dP

dt

= IF − fF E

Glycogen supply small, ~ fixed on long time scales

fC−

IC − fCEρG
dG

dt
=

)E= IP
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−(1− fF

Reduction to 2D
ρF

dF

dt

ρP
dP

dt

= IF − fF E

= 0

Glycogen supply small, ~ fixed on long time scales

fC−

IC − fCEρG
dG

dt
=

)E= IP
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Reduction to 2D
ρF

dF

dt
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)E= IP

Thursday, December 3, 2009



−(1− fF

Reduction to 2D
ρF

dF

dt

ρP
dP

dt

= IF − fF E

Glycogen supply small, ~ fixed on long time scales

IC

E
− )E= IP

Thursday, December 3, 2009



−(1− fF

Reduction to 2D
ρF

dF

dt

ρP
dP

dt

= IF − fF E

Glycogen supply small, ~ fixed on long time scales

)E +IC= IP
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−(1− fF

Reduction to 2D
ρF

dF

dt

ρP
dP

dt

= IF − fF E

Glycogen supply small, ~ fixed on long time scales

)E+IC= IP
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Divide mass into lean and fat

−(1− fF

Reduction to 2D
ρF

dF

dt

ρP
dP

dt

= IF − fF E

M = L + F

)E+IC= IP
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Divide mass into lean and fat

−(1− fF

Reduction to 2D
ρF

dF

dt

ρP
dP

dt

= IF − fF E

Change in L due to change 
in P and water

dL

dt

M = L + F

dP

dt
=

1 + hP

1

)E+IC= IP
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Divide mass into lean and fat

−(1− fF

Reduction to 2D
ρF

dF

dt
= IF − fF E

dL

dt

M = L + F

ρP

1 + hP
)E+IC= IP
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Divide mass into lean and fat

−(1− fF

Reduction to 2D
ρF

dF

dt
= IF − fF E

dL

dt

M = L + F

Lean intake = carbs + protein

ρP

1 + hP

IP + IC =

)E+IC= IP

IL
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Divide mass into lean and fat

−(1− fF

Reduction to 2D
ρF

dF

dt
= IF − fF E

dL

dt

M = L + F

ρP

1 + hP
)E+IC= IP IL
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 Body composition model

ρF
dF

dt
= IF − fE

ρL
dL

dt
= IL − (1− f)E
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 Body composition model

ρL = ρP /(1 + hP )

 hp protein hydration coefficient

ρF
dF

dt
= IF − fE

ρL
dL

dt
= IL − (1− f)E
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 f  is fraction of energy use that is fat

 Body composition model

ρL = ρP /(1 + hP )

 hp protein hydration coefficient

ρF
dF

dt
= IF − fE

ρL
dL

dt
= IL − (1− f)E

Thursday, December 3, 2009



 f  is fraction of energy use that is fat

 Body composition model

 E and f are functions of F and L

ρL = ρP /(1 + hP )

 hp protein hydration coefficient

ρF
dF

dt
= IF − fE

ρL
dL

dt
= IL − (1− f)E

Thursday, December 3, 2009



Dynamical systems

Infer global dynamics from local information
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Dynamical systems
dx

dt
= x(1− x)
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Dynamical systems
dx

dt
= x(1− x) Fixed points= 0
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Dynamical systems
dx

dt
= x(1− x) Fixed points

x = 0, 1

= 0
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Dynamical systems
dx

dt
= x(1− x) Fixed points

x0 1

Represent geometrically in phase plane

x = 0, 1

= 0
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Dynamical systems
dx

dt
= x(1− x) Fixed points

x0 1

Represent geometrically in phase plane

x = 0, 1

= 0

dx

dt
> 0

Thursday, December 3, 2009



Dynamical systems
dx

dt
= x(1− x) Fixed points

x0 1

Represent geometrically in phase plane

x = 0, 1

= 0

dx

dt
> 0

dx

dt
< 0

Thursday, December 3, 2009



Dynamical systems
dx

dt
= x(1− x) Fixed points

x0 1

Represent geometrically in phase plane

x = 0, 1

= 0

dx

dt
> 0

dx

dt
< 0

vector field
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 Fixed points  

ρF
dF

dt
= IF − fE

ρL
dL

dt
= IL − (1− f)E
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 Fixed points  

ρF
dF

dt
= IF − fE

ρL
dL

dt
= IL − (1− f)E

vector
field{
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Nullclines
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Nullclines

 Fixed points  

= 0

= 0

ρF
dF

dt
= IF − fE

ρL
dL
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= IL − (1− f)E

 L - Nullcline

F - Nullcline

vector
field{

energy balance

fat balancef(F,L) =
IF

I

E(F,L) = I
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Phase plane
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Phase plane

L

F

F - nullcline
IF − fE(F,L) = 0

IL − (1− f)E(F,L) = 0

L - nullcline

Fate of all initial conditions is known

dF

dt dL

dt
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F

L

a)

F

L

c)

F

b)

L

F

d)

L

Fixed point Line attractor 

Multiple fixed points Limit cycle

Possible phase plane dynamics

Chow and Hall, PLoS Comp Bio,4: e1000045, 2008
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Indirect calorimetry

C6H12O6 + 6 O2 → 6 CO2 + 6 H2O 

C16H32O2 + 23 O2 → 16 CO2 + 16 H2O

C72H112N2O22S + 77 O2 → 63 CO2 + 38 H2O + SO3 + 9 CO(NH2)2

Carbohydrates:

Fat:

Protein:

Flux of CO2 and O2 ⇒ E
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Energy expenditure rate E

Basal metabolic rate (BMR) 

E = +

Physical activity
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Energy expenditure rate E

Basal metabolic rate (BMR) 

E = +

Physical activity

 E ~ 10 MJ/day
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Energy expenditure rate E

Basal metabolic rate (BMR) 

E = +

Physical activity

 E ~ 10 MJ/day ~115 W
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Energy expenditure rate E

Basal metabolic rate (BMR) 

E = +

Physical activity

 E ~ 10 MJ/day ~ 3 KWH/day~115 W
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Basal metabolic rate

Nielson, 2000
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Basal metabolic rate

BMR (MJ/day) = 0.9 L (kg) + 0.01 F (kg) +1.1e.g.

Nielson, 2000
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Physical activity

ranges from 0 to 0.1 MJ/kg/day

EPA = aM = a(L + F )

Energy due to PA ∝ Mass

a
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Physical activity

ranges from 0 to 0.1 MJ/kg/day

EPA = aM = a(L + F )

Energy due to PA ∝ Mass

∴ E is linear in F and L

a
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E(F,L) = bF + cL + d = I

F

L

f(F,L) =
IF

I
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E(F,L) = bF + cL + d = I

F

L

f(F,L) =
IF

I

Single fixed point is generic
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F

F + qL3 + rL2 + sL + t
=

IF

E

E(F,L) = bF + cL + d = I

Multi-stability or limit cycle requires fine tuning

F

L
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E(F,L) = bF + cL + d = I

Line attractor requires special form

F

L

f =
IF

E
+ ψ(I − E)

Thursday, December 3, 2009



E(F,L) = bF + cL + d = I

Line attractor requires special form

F

L

f =
IF

E
+ ψ(I − E)
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The problem with f

In energy balance, f  reflects diet
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The problem with f

In energy balance, f  reflects diet f(F,L) =
IF

I
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The problem with f

In energy balance, f  reflects diet f(F,L) =
IF

I

ρF
dF

dt
= IF − fE

ρL
dL

dt
= IL − (1− f)E

Must invert in dynamic situation
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Forbes, 2000

Body composition

L

F
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Forbes, 2000

Body composition

L

F
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Apply Forbes law to model

=

=
dt

dt
dF

dL

ρF

ρL

dF

dL
=

F

10.4

(IF − fE)

(IL − (1− f)E)
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Apply Forbes law to model
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dt
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Apply Forbes law to model

=

= dt

dt
dF

dL

ρF

ρL

dF

dL
=

F

10.4

(IF − fE)

(IL − (1− f)E)
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Apply Forbes law to model

=dF
dL ρF

ρL

dF

dL
=

F

10.4

(IF − fE)
(IL − (1− f)E)
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Apply Forbes law to model

ρF

ρL
=

F

10.4
(IF − fE)

(IL − (1− f)E)
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Apply Forbes law to model

ρF

ρL
=

F

10.4
(IF − fE)

(IL − (1− f)E)

f =
IF − (1− p)(I − E)

E
p =

1
1 + ρF

ρL

F
10.4

Thursday, December 3, 2009



Apply Forbes law to model

ρF

ρL
=

F

10.4
(IF − fE)

(IL − (1− f)E)

f =
IF − (1− p)(I − E)

E
p =

1
1 + ρF

ρL

F
10.4
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Weight and fat loss
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Energy partition model

ρF
dF

dt
=

ρL
dL

dt
=

IF − fE
f =

E
(1− p)(I − E)IF−

IL − (1− f)E
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Energy partition model

ρF
dF

dt
=

ρL
dL

dt
=

IF − E
E

(1− p)(I − E)IF −

IL − (1− f)E
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Energy partition model

ρF
dF

dt
=

ρL
dL

dt
=

IF − (1− p)(I − E)IF +

IL − (1− f)E
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Energy partition model

ρF
dF

dt
=

ρL
dL

dt
=

(1− p)(I − E)

IL − (1− f)E
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Energy partition model

ρF
dF

dt
=

ρL
dL

dt
=

(1− p)(I − E)

p(I − E)
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Energy partition model

Steady state is line attractor E(F,L) = I

ρF
dF

dt
=

ρL
dL

dt
=

(1− p)(I − E)

p(I − E)
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Energy partition model

Steady state is line attractor

Almost all previous models use energy partition

E(F,L) = I

ρF
dF

dt
=

ρL
dL

dt
=

(1− p)(I − E)

p(I − E)
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F

L

E(F,L)=I

Consequences of line attractor
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F

L

E(F,L)=I

possible
histories

Consequences of line attractor
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F

L

E(F,L)=I

constant weight

possible
histories

F + L = M

Consequences of line attractor
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F

L

E(F,L)=I

constant weight

possible
histories

Change 
lifestyle

F + L = M

Consequences of line attractor
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F

L

E(F,L)=I

constant weight

possible
histories

Change 
lifestyle

F + L = M

Consequences of line attractor
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F

L

Original

Perturbed
b)

F

L

a)Perturbed

Original

Effect of perturbations

fixed point line attractor
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Numerical example

E (MJ/Day) =0.14 L (kg)+0.05 F (kg) +1.55

ρF = 37.7 MJ/kg

ρL = 7.6 MJ/kg

ρF
dF

dt
= IF − fE

ρL
dL

dt
= IL − (1− f)E
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Numerical example

E (MJ/Day) =0.14 L (kg)+0.05 F (kg) +1.55

ρF = 37.7 MJ/kg

ρL = 7.6 MJ/kg

f =
IF

E
− (1− p)

I − E

E
− ψ

E

ρF
dF

dt
= IF − fE

ρL
dL

dt
= IL − (1− f)E

Thursday, December 3, 2009



Numerical example

E (MJ/Day) =0.14 L (kg)+0.05 F (kg) +1.55

ρF = 37.7 MJ/kg

ρL = 7.6 MJ/kg

ρF
dF

dt
= (1− p)(I − E) + ψ

ρL
dL

dt
= p(I − E)− ψ
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Numerical example

E (MJ/Day) =0.14 L (kg)+0.05 F (kg) +1.55

ρF = 37.7 MJ/kg

ρL = 7.6 MJ/kg

p = 2/(2 + F )Forbes:

ρF
dF

dt
= (1− p)(I − E) + ψ

ρL
dL

dt
= p(I − E)− ψ
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Numerical example

E (MJ/Day) =0.14 L (kg)+0.05 F (kg) +1.55

ψ =
{

0.05(F − 0.4 exp(L/10.4))/F
0

ρF = 37.7 MJ/kg

ρL = 7.6 MJ/kg

p = 2/(2 + F )Forbes:

ρF
dF

dt
= (1− p)(I − E) + ψ

ρL
dL

dt
= p(I − E)− ψ
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Numerical example

E (MJ/Day) =0.14 L (kg)+0.05 F (kg) +1.55

ψ =
{

0.05(F − 0.4 exp(L/10.4))/F
0

ρF = 37.7 MJ/kg

ρL = 7.6 MJ/kg

invariant manifold

fixed point
p = 2/(2 + F )Forbes:

ρF
dF

dt
= (1− p)(I − E) + ψ

ρL
dL

dt
= p(I − E)− ψ
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U.S. Food Supply

Food Intake (model)

FAO Food Supply

Hall, Guo, Dore, Chow. PLoS One (2009)
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USDA Food Availability

FAO Food Supply

Hall, Guo, Dore, Chow. PLoS One (2009)

U.S. Food Supply

Thursday, December 3, 2009



Predicted Intake

USDA Food Availability

FAO Food Supply

Hall, Guo, Dore, Chow. PLoS One (2009)

U.S. Food Supply
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Predicted Intake

USDA Food Availability

FAO Food Supply

Hall, Guo, Dore, Chow. PLoS One (2009)

U.S. Food Supply
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Predicted Intake

USDA Food Availability

FAO Food Supply

Hall, Guo, Dore, Chow. PLoS One (2009)

U.S. Food Supply

~1400 kcal
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U.S. Food Waste

Food Waste (model)

Food Waste (USDA)

Hall, Guo, Dore, Chow. PLoS One (2009)

Thursday, December 3, 2009



U.S. Food Waste

Food Waste (model)

Solid Food Waste (EPA)

Hall, Guo, Dore, Chow. PLoS One (2009)
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L

F

Energy partition models are effectively 1D

One dimensional models

ρF
dF

dt
= (1− p)(I − E)

ρL
dL

dt
= p(I − E)

m =
ρF

ρL

1− p

p
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One dimensional models
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dF

dt
=ρL

dL

dt
+ I − E

m =
ρF

ρL

1− p

p

L ≈ mF + b
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One dimensional models
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=ρL

dL

dt
+ I − E

m =
ρF

ρL

1− p

p

L ≈ mF + b F = M − L
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L
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Energy partition models are effectively 1D

One dimensional models

ρF
dF

dt
=ρL

dL

dt
+ I − E

m =
ρF

ρL

1− p

p

L ≈ mF + b F = M − L

F =
M − b

1 + m
L =

mM + b

1 + m
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One dimensional models

ρM
dM

dt
= I − εM − b ρM =

ρF ρL

ρL + (ρF − ρL)p
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One dimensional models

ρM
dM

dt
= I − εM − b ρM =

ρF ρL

ρL + (ρF − ρL)p

Leaky integrator

Thursday, December 3, 2009



One dimensional models

ρM
dM

dt
= I − εM − b ρM =

ρF ρL

ρL + (ρF − ρL)p

Leaky integrator

C
dV

dt
= I − 1

R
V
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M = (I − b)/ε ∆M ∼ 1
ε
∆I

Steady state

ρM
dM

dt
= I − εM − b = 0
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M = (I − b)/ε ∆M ∼ 1
ε
∆I

Steady state

 ε decreases with weight and increases with activity

ρM
dM

dt
= I − εM − b = 0

ε ~ 0.1 MJ/kg/day or 23 kcal/kg/day 
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M = (I − b)/ε ∆M ∼ 1
ε
∆I

Steady state

 ε decreases with weight and increases with activity

ρM
dM

dt
= I − εM − b = 0

Extra ~23 kcal/day is an extra kg

ε ~ 0.1 MJ/kg/day or 23 kcal/kg/day 
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τ = ρM/ε

 Time constant (half-life/.69) to reach steady state:

ρM
dM

dt
= I − εM − b

Time Constant
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τ = ρM/ε

 Time constant (half-life/.69) to reach steady state:

 ρM ~ 7700 kcal/kg, ε ~ 23 kcal/day, τ ~1 year

ρM
dM

dt
= I − εM − b

Time Constant
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τ = ρM/ε

 Time constant (half-life/.69) to reach steady state:

 ρM ~ 7700 kcal/kg, ε ~ 23 kcal/day, τ ~1 year

 τ increases with weight and decreases with activity

ρM
dM

dt
= I − εM − b

Time Constant
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To maintain weight to 2 kg requires controlling 
intake to ~50 kcal/day, (out of ~2500 kcal/day)

Intake precision
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To maintain weight to 2 kg requires controlling 
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Intake precision

Cookie is ~150 kcal
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To maintain weight to 2 kg requires controlling 
intake to ~50 kcal/day, (out of ~2500 kcal/day)

Intake precision

Cookie is ~150 kcal

Paradox? 
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To maintain weight to 2 kg requires controlling 
intake to ~50 kcal/day, (out of ~2500 kcal/day)

Intake precision

Cookie is ~150 kcal

Paradox? No, because of long time constant
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Example daily intake energy 

CV ~ 24%

Beltsville one year intake study (courtesy of  W. Rumpler)
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Intake varations have little effect on weight
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Time varying intake

CV(I) is σ/I ,        find CV(M) 

Noisy intake

〈η(t)η(t′)〉 = σ2δ(t − t′) White noise

I(t) = Ī + η(t)

ρM
dM

dt
= Ī − b− εM + η(t) Ornstein-Uhlenbeck 

process
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〈M〉 =
I − b

ε
〈(M(t) − 〈M〉)2〉 =

σ2

2ρM ε

CV(M) =
1√
2τ

Ī

I − b
CV(Ī) τ = ρM/ε
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〈M〉 =
I − b

ε
〈(M(t) − 〈M〉)2〉 =

σ2

2ρM ε

CV(M) =
1√
2τ

Ī

I − b
CV(Ī) τ = ρM/ε

For
√

2τ ∼ 30, Ī ∼ 2500, b ∼ 600
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CV (M) reduced by factor of 15-20 vs CV (I)

〈M〉 =
I − b

ε
〈(M(t) − 〈M〉)2〉 =

σ2

2ρM ε

CV(M) =
1√
2τ

Ī

I − b
CV(Ī) τ = ρM/ε

For
√

2τ ∼ 30, Ī ∼ 2500, b ∼ 600
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Simulated Beltsville data 10 years

CV ~ 23% CV ~ 2%
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Correlations increase fluctuations
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Correlations increase fluctuations

Periwal and Chow,  AJP:EM, 291:929-36 (2006)
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Longer correlations ⇒ higher BMI
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