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Geometry κM =
1

2
(κ1 + κ2)

κG = κ1κ2Gauss curvature

Mean curvatureκ1, κ2 principal curvatures

κG < 0 κG = 0 κG > 0

κG

intrinsic - isometric invariant 
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thicknessPhysics long wavelength
deformations

Stretching (tangential) mode Bending (transverse) mode

γ ∼

∆l

l
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l
strain curvature strain hκ

energy/area energy/area

E  - modulusExpensive Cheap

- Coupling of stretching to bending ?  - via geometry  κG != 0

Us ∼ Etγ2
Ub ∼ Et(tκ)2 ∼ Et3κ2

t/l! 1
tκ! 1t



Q ?
  - Stretching dominated ?
  - Bending dominated ?
  - Inhomogeneous ....

Min[

∫
UedA +

∫
b[w(x, y) − R]dA]

Packing constraint

Elastic energy
Ue = C1(Tr κ)2 + C2Det κ + C3(Tr γ)2 + C4Det γ

κG

- No 2-d analytical solutions ! 
- Scaling/asymptotic analysis ? 2 limits : 

Det κ ≈ 0

Tr(σ κ) ≈ 0

  almost isometric
            (except for crumples) 

almost planar 
(except for wrinkles)

ε = t/l! 1

Equations of equilibrium  ? 

[x, y, 0] → [x + u(x, y), y + v(x, y), w(x, y)]Geometry

Physics linear stress-strain law

e.g. Monge gauge

Foppl, von Karman (1907)

geometric compatibility

normal force balance

+ B.C.

σ = Cγ

κM

Et3

12(1− ν2)
∇2(Tr κ) = Tr(σ κ)

∇2(Tr σ) = −Et(Det κ)



Multi-walled carbon nanotube

Poncharal et al. (2002)

LM, Bico et al (EPL 2003)Wrinkling 

t R ∼ ntn number of layersthickness (1 atom !)
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Fig. 1 – The geometric similarities in the rippling of a bent (a) multi-walled carbon nanotube (from [1])
and (b) rubber macrotube suggest that a single theory can explain both. (c) A schematic of the ripples
showing our notation.

is bent (fig. 1(b)), we see a similar rippling instability. However, there are two putative
qualitative differences between the systems due to this large disparity in scale that we must
address first: the effect of thermal fluctuations and the role of short-range forces, both of
which could be important for nanotubes. The persistence length of single-wall nanotubes is
of the order of meters, and that for multi-walled tubes is even larger, so that thermal effects
can be safely neglected in an equilibrium theory. As for the role of short-range forces, their
dominant effect is to prevent the inter-penetration of the layers. In the macrotubes, the
presence of layers serves the same purpose. Therefore, a single theory can possibly explain
both despite the very large disparity in length scales which separate the two phenomena. This
hope is bolstered by the fact that experiments on nanotubes [1] and rubber tubes show that
the rippling is completely reversible and elastic. In this letter we show that a simple elastic
theory that assumes that the strains are small so that the material response is linear and
isotropic in each layer [2] but accounts for geometrical nonlinearities suffices to explain these
observations quantitatively.

We first give a physical argument for the formation of the popliteal (ham of the knee)
ripples in multi-walled tubes. If a long single-walled tube of length L, circular cross-section
with external radius R and thickness t ! R < L is bent into an arc of a circle with curvature
κ, the cross-section first ovalizes into the Brazier mode [3]. When the curvature exceeds a
critical value, the tube collapses about a knee formed by a sharp ridge connecting two kinks,
just like a bent drinking straw [4, 5]. This phenomenon reflects the very large energetic cost
of stretching a thin sheet compared to bending it [6]; the ridge allows the shell to respond
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Ingredients for a theory of wrinkles:

- “Packing” constraint

- Bending energy penalty

- “Mattress” of springs
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Skin ?

Compression Tension

Cerda, LM (PRL 2003)
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thermal expansion between the skin and substrate6,7, differential 
swelling or shrinkage8, or differential growth of tissue (for example, 
human skin). Indeed, even if the skin/substrate system is subject to 
a simple compressive load, the skin will wrinkle in the same way due 
to the competition between the effects of bending the skin, which 
penalizes short wavelength buckles, and stretching the unmodifi ed 
substrate (foundation), which penalizes long wavelengths14,15. This 
sets the stage for the amplitude of the primary wrinkles to grow 
as the applied strain is further relieved. Eventually the amplitude 
saturates owing to nonlinear effects in stretching and shearing the 
substrate. The composite of the wrinkled skin and the stretched 
substrate leads to the formation of an ‘effective skin’ that is now 
thicker and much stiffer than the original skin. Further release of the 
applied strain leads to additional effective compression; as a result, 
the composite skin buckles on a much larger length scale, creating 
a hierarchical buckled pattern. The formation of higher generation 
buckles continues until the strain is removed from the substrate. 
In an infi nite system there is clearly no limit to this hierarchical 
patterning. Even in our fi nite system up to fi ve generations of these 
hierarchical buckles are arranged in a nested manner; each buckle 
generation is a scaled-up version of the primary buckle (see Fig. 2). 
The smallest buckles are a few nanometres in wavelength, whereas 
the largest ones are almost a millimetre in size, thus spanning nearly 
fi ve orders of magnitude in dimension.

To quantify this pattern, we summarize a classical calculation14–16 
here. The energy density per unit area for the rigid skin of thickness 
h and modulus ES, associated with bending it into a periodic array 
of wrinkles of wavelength λ and amplitude ζ scales as Ubend ≈ ESh3ζ2/
λ4, whereas the stretching energy density of the substrate, having 
a modulus EB, scales as Ustretch ≈ EBζ2/λ because the deformations 
decay exponentially into the bulk with a characteristic scale set by 
the wavelength14,15. The buckle amplitude is not independent of the 
wavelength owing to the ease of bending compared with stretching; this 
allows for deformations to be approximately inextensional, so that16:

 (1)
  

( (1+ λ2
ζ 2 1/2 –1~ ∆ ,  

        
where ∆ is the applied external compressive strain. This last 
constraint implies that the amplitude of a wrinkle scales as16:

  ζ ~ λ∆1/2 .    (2)

Substituting the expression in (2) into the total energy per unit 
length Utotal ≈ (Ubend + Ustretch)λ and minimizing Utotal yields the well-
known scaling law for the wavelength14–16:

  ( (

.
Es

EB

1/3

~ λ h  
  (3)
The ratio of Young’s moduli ES/EB was measured experimentally 
for our UVO-treated unstretched PDMS fi lms (see Methods 
section for details). PDMS specimens treated with UVO for 30 
and 60 minutes had ES/EB equal to ∼15 and ∼87, respectively, 
which using equation (3) gives λ ≈ 12 and 22 nm, respectively, for 
the two treatment times. From the data in Fig. 2, the estimated λ 
corresponds roughly to the experimentally measured periods of 
the fi rst generation of buckles (G1). To understand the formation 
of the next generation of buckles, we need to quantify the nonlinear 
saturation of the amplitude, which forms a thicker effective skin 
that then forms secondary wrinkles. This is accomplished by a 
fi nite element simulation of the system using a commercial package 
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Figure 3 Results of a fi nite element simulation of the skin + substrate system. 
The skin is modelled as a Hookean linear elastic solid, whereas the substrate is 
modelled as an incompressible hyperelastic solid with a neo-Hookean constitutive 
relation (see Methods for details). When the substrate is subject to a uniform 
compressive strain, a periodic pattern of primary wrinkles of small wavelength 
appears on the skin. a, Under further loading, the amplitude of the fi rst generation 
of wrinkles saturates and a secondary wrinkling pattern on much larger wavelength 
appears thus forming the hierarchical nested buckling pattern. b, A power spectrum 
of the free-surface height h(x), showing the squared Fourier-amplitude hk

2 as a 
function of the wavenumber k = 2π/λ confi rms the presence of two wavelengths. 
The wavelength of the fi rst generations is 55 nm, in agreement with experiment, 
whereas that of the second generation is 320 nm, which is a factor of three less 
than the experimental value. The primary reason for this discrepancy is the lack of 
an accurate model of the nonlinear constitutive law for the substrate.
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Figure 4 Scaled buckle amplitude (ζ/∆1/2) plotted as a function of the buckle 
period (λ) on a log–log plot. The symbols are the same as in Fig. 1. We see that 
the data collapse onto a straight line consistent with equation (2). The error bars are 
one standard deviation of the data.
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self-similar wrinkling

Controllable 1-d wrinkling patterns : 

J. Genzer, LM et al. (2005)

LETTERS
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the relationship between the defect density and the strain release 
rate would facilitate the generation of buckled substrates with 
minimal number of structural imperfections.

A detailed analysis of the buckled surface with SFM and 
profi lometry uncover that the buckling patterns are hierarchical. 
Representative images depicting the various buckle generations 
are presented in Fig. 2. Buckles with smaller wavelengths (and 
amplitude) rest parallel to and within larger buckles, forming a 
nested structure. Figure 2e summarizes the SFM and profi lometry 
results of the buckle periods. The data in Fig. 2e reveal that at least 
fi ve distinct buckle generations (G) are present: the wavelengths of 
the generations (λ) are G1: ~50 nm, G2: ~1 µm, G3: ~5 µm, G4: 
~50 µm, and G5: ~0.4 mm.

The mechanism of formation of the fi rst generation of buckles, at 
the smallest scale, that is, ~50 nm, is as follows: The UVO treatment 

densifi es the upper surface of the PDMS skin by proving additional 
crosslinks12,13 and leads to an equilibrium (strain-free) confi guration 
of the skin that resides on top of the fl exible substrate, which is still 
under tensile strain. When this strain is relieved from the specimen, 
the substrate attempts to contract back to its strain-free confi guration. 
However, the mismatch between the equilibrium strains of the stiff 
skin and the soft substrate prevents this from happening uniformly 
through the depth of the material. The competition between the 
bending-dominated deformations of the skin and the stretching/
shearing-dominated deformations of the substrate cause the skin 
to wrinkle in response to the relaxation of the applied strain. Thus, 
the basic driving force behind wrinkling is the mismatch in the 
equilibrium states of the skin and the substrate. Although here this  
arises due to inhomogeneous crosslinking in the presence of strain, 
a similar phenomenon will take place in the presence of differential 
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Figure 2 Characterization of the nested hierarchy of buckles. a, Scanning electron microscopy image of a buckle on PDMS substrate (covered with a ∼4-nm-thick 
layer of platinum) revealing the G4 generation of buckles. b, Optical microscopy image in the transmission mode of G3 and G4 generations of buckles. c, Topography profi le 
collected with profi lometry on G2 (inset) and G3 (main fi gure) generations of buckles. d, Scanning force microscopy image revealing the structure of G1 buckles. e, Buckle 
period as a function of the strain imposed on the samples before the UVO treatment lasting for 30 (squares), 60 (circles), and 90 (up-triangles) minutes as measured by 
scanning force microscopy (fi lled symbols) and profi lometry (open symbols). The error bars represent one standard deviation of the data.
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thermal expansion between the skin and substrate6,7, differential 
swelling or shrinkage8, or differential growth of tissue (for example, 
human skin). Indeed, even if the skin/substrate system is subject to 
a simple compressive load, the skin will wrinkle in the same way due 
to the competition between the effects of bending the skin, which 
penalizes short wavelength buckles, and stretching the unmodifi ed 
substrate (foundation), which penalizes long wavelengths14,15. This 
sets the stage for the amplitude of the primary wrinkles to grow 
as the applied strain is further relieved. Eventually the amplitude 
saturates owing to nonlinear effects in stretching and shearing the 
substrate. The composite of the wrinkled skin and the stretched 
substrate leads to the formation of an ‘effective skin’ that is now 
thicker and much stiffer than the original skin. Further release of the 
applied strain leads to additional effective compression; as a result, 
the composite skin buckles on a much larger length scale, creating 
a hierarchical buckled pattern. The formation of higher generation 
buckles continues until the strain is removed from the substrate. 
In an infi nite system there is clearly no limit to this hierarchical 
patterning. Even in our fi nite system up to fi ve generations of these 
hierarchical buckles are arranged in a nested manner; each buckle 
generation is a scaled-up version of the primary buckle (see Fig. 2). 
The smallest buckles are a few nanometres in wavelength, whereas 
the largest ones are almost a millimetre in size, thus spanning nearly 
fi ve orders of magnitude in dimension.

To quantify this pattern, we summarize a classical calculation14–16 
here. The energy density per unit area for the rigid skin of thickness 
h and modulus ES, associated with bending it into a periodic array 
of wrinkles of wavelength λ and amplitude ζ scales as Ubend ≈ ESh3ζ2/
λ4, whereas the stretching energy density of the substrate, having 
a modulus EB, scales as Ustretch ≈ EBζ2/λ because the deformations 
decay exponentially into the bulk with a characteristic scale set by 
the wavelength14,15. The buckle amplitude is not independent of the 
wavelength owing to the ease of bending compared with stretching; this 
allows for deformations to be approximately inextensional, so that16:

 (1)
  

( (1+ λ2
ζ 2 1/2 –1~ ∆ ,  

        
where ∆ is the applied external compressive strain. This last 
constraint implies that the amplitude of a wrinkle scales as16:

  ζ ~ λ∆1/2 .    (2)

Substituting the expression in (2) into the total energy per unit 
length Utotal ≈ (Ubend + Ustretch)λ and minimizing Utotal yields the well-
known scaling law for the wavelength14–16:

  ( (

.
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EB
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~ λ h  
  (3)
The ratio of Young’s moduli ES/EB was measured experimentally 
for our UVO-treated unstretched PDMS fi lms (see Methods 
section for details). PDMS specimens treated with UVO for 30 
and 60 minutes had ES/EB equal to ∼15 and ∼87, respectively, 
which using equation (3) gives λ ≈ 12 and 22 nm, respectively, for 
the two treatment times. From the data in Fig. 2, the estimated λ 
corresponds roughly to the experimentally measured periods of 
the fi rst generation of buckles (G1). To understand the formation 
of the next generation of buckles, we need to quantify the nonlinear 
saturation of the amplitude, which forms a thicker effective skin 
that then forms secondary wrinkles. This is accomplished by a 
fi nite element simulation of the system using a commercial package 
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Figure 3 Results of a fi nite element simulation of the skin + substrate system. 
The skin is modelled as a Hookean linear elastic solid, whereas the substrate is 
modelled as an incompressible hyperelastic solid with a neo-Hookean constitutive 
relation (see Methods for details). When the substrate is subject to a uniform 
compressive strain, a periodic pattern of primary wrinkles of small wavelength 
appears on the skin. a, Under further loading, the amplitude of the fi rst generation 
of wrinkles saturates and a secondary wrinkling pattern on much larger wavelength 
appears thus forming the hierarchical nested buckling pattern. b, A power spectrum 
of the free-surface height h(x), showing the squared Fourier-amplitude hk

2 as a 
function of the wavenumber k = 2π/λ confi rms the presence of two wavelengths. 
The wavelength of the fi rst generations is 55 nm, in agreement with experiment, 
whereas that of the second generation is 320 nm, which is a factor of three less 
than the experimental value. The primary reason for this discrepancy is the lack of 
an accurate model of the nonlinear constitutive law for the substrate.
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Figure 4 Scaled buckle amplitude (ζ/∆1/2) plotted as a function of the buckle 
period (λ) on a log–log plot. The symbols are the same as in Fig. 1. We see that 
the data collapse onto a straight line consistent with equation (2). The error bars are 
one standard deviation of the data.

nmat1342-print.indd   295nmat1342-print.indd   295 8/3/05   4:38:34 pm8/3/05   4:38:34 pm

Nature  Publishing Group© 2005

Epidermis

Dermis (l, Ep)l

Ef

Ep
∼ 10

3

(t, Ef )

λ ∼ (
Ef t3

K
)1/4

deep “water”

not very visible

λ! l, L ∼ λ, λ ∼ t(
Ef

Ep
)1/3

t/l! 1, λ/t ∼ 10

shallow “water”

visible - need Botox ?

λ! l, λ ∼ (tl)1/2(
Ef

Ep
)1/6

l/t ∼ 10, λ/l ∼ 1



LM, Rica (Science 2005)
2-d : self-organized Origami

March 21, 2005    

The New York Times

Copyright 2005 The New York Times Company

In-vivo

In-papyro

Miura-ori (1975)

map-folding ?

secondary instability of a periodic wrinkling pattern

- a model for morphogenesis ? (differential) shrinkage

In-silico

In-vitro (drying gelatin)

Rizzieri et al. (2005)

peak 

ridge 

εA + h2(∂x −
i

∂yy

)2 − g|A|2A = 0

Newell-Whitehead-Segel  eqn. (1969)

[ ]



Elements of a drape ? Cerda, LM, Passini (PNAS 2004)
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Configurational multi-stability ?

(Fig. 2a) !g ! 3 cm. Integrating Eq. 6 in the radial direction, we
find that the gravitational energy UG " #1⁄3h!gR3$0

2" ds cos #
and the bending energy UB " 1⁄2B$A dA$2!r2 " 1⁄2Bln(R!
R!)$0

2" ds$2, where R! is the size of the tip or core, where double
curvature and stretching effects cannot be neglected. Then the
total dimensionless Lagrangian isg

L %
1
2"

0

2"

ds $2 & '"
0

2"

ds cos # ( )"
0

2"

ds%1 ( cos *!sin #&.

[7]

Here ' " (R!!g)3!3ln(R!R!), and ) is the Lagrange multiplier
that enforces the continuity constraint embodied in Eq. 5.
Extremizing the Lagrangian L we get an equation for the
curvature

$̈ & %a2 & $2!2&$ % #'%$ cos # ( sin # cos *&, [8]

where a2 is a constant of integration related to the Lagrange
parameter ). It is noteworthy that when ' " 0 Eq. 8 is integrable
in terms of elliptic functions. In fact, this is the equation for the
planar Elastica of Euler (4), i.e., in the absence of gravity,
bending a surface into a conical shape is equivalent to the planar
bending of an elastic bar even in the large deformation regime
associated with geometrically exact kinematics.

Solving Eqs. 3, 4, and 8 numerically with periodic boundary
conditions, we find that when ' ' 'c the solution with the least
energy has two folds n " 2,h with the total energy +U!+n ( 0.
The numerical procedure, implemented in Mathematica (12),
starts with the solution to the linearized versions of Eqs. 3, 4, and
8, which serves as a first guess in a homotopy or continuation
method that increases the strength of the nonlinearity and!or
gravity gradually.i When ' " 'c ! 5.8 the solution with two folds
exchanges stability with a lower energy solution having only one
fold (see Fig. 3), which breaks the symmetry with respect to the
plane e1 # e3. Fig. 3a shows the shape of both solutions for ' !
6.1 when the generator at s " " just touches the one at s " 0 for
the second shape.j This behavior of the solution for small sheets
is characteristic of rubber but not for wrapping paper. Fig. 4 a
and b shows that two small sheets with R ! 4!g, one of wrapping
paper and the other of rubber, have different structures. For
small sheets, two solutions are possible: a cylindrical form with
parallel generators (Fig. 4a) or a conical form with two folds
(Fig. 4b). The intuitive explanation for this difference arises from
considerations of the core bending energy that increases loga-
rithmically with the size of the tip, R!, so that a surface with a
smaller tip but the same value of R!!g will have a higher energy.
We note that although R! ) h1/3R2/3 (8), here we treat it as a
parameter because of its appearance in the argument of a
logarithm. For wrapping paper the core size (smaller than that
for rubber sheet) can be so small that the cylindrical shape
without a singularity is the solution with the lowest energy. Fig.
4c shows the energy for the different solutions and two different
values of the dimensionless parameter R!!!g consistent with our
experimental observations. If the sheet is large enough however,
the conical shape with one fold (Fig. 2a) is always the preferred

solution because the extra core bending energy is more than
compensated for by the reduction of the gravitational energy
caused by a single fold.

Scaling Laws for Complex Folds
When the sheet radius R!!g (( 1, a large number of folds is the
result; however, the lack of any symmetry along with the problem
of self-contact of the folds makes an exact analysis difficult.
Therefore, we use scaling arguments to tease out the general
trends of the solution. The gravitational energy can be mini-
mized by reducing the azimuthal deflection angle #, but this
process increases the number of folds (because of the inexten-
sibility condition) and hence the bending cost, so that the result
is an optimal number of folds minimizing the total energy. When
the folds are large in number and nearly vertical, , ! "!2, # ''1
and the kinematic equations (3 and 4) yield #̈ ! $. Then UB )
Bln(R!R!)#̈2 and UG ) h!gR3#2 * cst and their sum is a
minimum when UB ) UG. Using #̇ ) #!-s in the previous
relation leads to the characteristic arc length of a single fold
-s ) 1!'1/4 and the number of folds n is given by

n %
2"

-s #
%R!!g&

3/4

ln%R!R*&
1/4 [9]

an increasing function of the system size R.

gWe should also include the condition for global torque balance. Equivalently, g! + R!CM "
0, where R!CM is the center of mass. Here, the solutions of Eq. 7 identically satisfy the
balance for torques.

hOur definition of the number of folds is formally given by the number of times the
curvature changes sign as s varies from s " 0 to s " 2".

iSolving the linearized equations yields n-fluted conical shapes, of which the two-fluted
solution has the minimum energy. However, for large sizes of the ‘‘core’’ region R! where
the developable solution fails, the cylindrically deformed shape can have an even lower
energy and is preferred.
jThe generator at s " 0 is chosen as the point with maximal negative curvature.

Fig. 3. Bistability in conical folding. (a) Different views of the equilibrium
shapes obtained for ' ! 6.1 ( 'c. (Left) A cone with two folds. (Right) A cone
with one fold. (b) Dimensionless total energy 2U!Bln(R!R!) as a function of '.
The solid line corresponds to a conical shape with two folds, and the dotted
line corresponds to a cone with one fold. For small sheets with ' ' 'c only a
cone with two folds exists. For comparison, the dashed line shows the energy
of a big sheet with constant opening angle # " "!6 made by folding a
semicircle of the same material. (Inset) The energy following a linear analysis
of Eq. 7 matches the numerical solution for ' ' 2.

1808 $ www.pnas.org!cgi!doi!10.1073!pnas.0307160101 Cerda et al.

(Fig. 2a) !g ! 3 cm. Integrating Eq. 6 in the radial direction, we
find that the gravitational energy UG " #1⁄3h!gR3$0

2" ds cos #
and the bending energy UB " 1⁄2B$A dA$2!r2 " 1⁄2Bln(R!
R!)$0

2" ds$2, where R! is the size of the tip or core, where double
curvature and stretching effects cannot be neglected. Then the
total dimensionless Lagrangian isg

L %
1
2"

0

2"

ds $2 & '"
0

2"

ds cos # ( )"
0

2"

ds%1 ( cos *!sin #&.

[7]

Here ' " (R!!g)3!3ln(R!R!), and ) is the Lagrange multiplier
that enforces the continuity constraint embodied in Eq. 5.
Extremizing the Lagrangian L we get an equation for the
curvature

$̈ & %a2 & $2!2&$ % #'%$ cos # ( sin # cos *&, [8]

where a2 is a constant of integration related to the Lagrange
parameter ). It is noteworthy that when ' " 0 Eq. 8 is integrable
in terms of elliptic functions. In fact, this is the equation for the
planar Elastica of Euler (4), i.e., in the absence of gravity,
bending a surface into a conical shape is equivalent to the planar
bending of an elastic bar even in the large deformation regime
associated with geometrically exact kinematics.

Solving Eqs. 3, 4, and 8 numerically with periodic boundary
conditions, we find that when ' ' 'c the solution with the least
energy has two folds n " 2,h with the total energy +U!+n ( 0.
The numerical procedure, implemented in Mathematica (12),
starts with the solution to the linearized versions of Eqs. 3, 4, and
8, which serves as a first guess in a homotopy or continuation
method that increases the strength of the nonlinearity and!or
gravity gradually.i When ' " 'c ! 5.8 the solution with two folds
exchanges stability with a lower energy solution having only one
fold (see Fig. 3), which breaks the symmetry with respect to the
plane e1 # e3. Fig. 3a shows the shape of both solutions for ' !
6.1 when the generator at s " " just touches the one at s " 0 for
the second shape.j This behavior of the solution for small sheets
is characteristic of rubber but not for wrapping paper. Fig. 4 a
and b shows that two small sheets with R ! 4!g, one of wrapping
paper and the other of rubber, have different structures. For
small sheets, two solutions are possible: a cylindrical form with
parallel generators (Fig. 4a) or a conical form with two folds
(Fig. 4b). The intuitive explanation for this difference arises from
considerations of the core bending energy that increases loga-
rithmically with the size of the tip, R!, so that a surface with a
smaller tip but the same value of R!!g will have a higher energy.
We note that although R! ) h1/3R2/3 (8), here we treat it as a
parameter because of its appearance in the argument of a
logarithm. For wrapping paper the core size (smaller than that
for rubber sheet) can be so small that the cylindrical shape
without a singularity is the solution with the lowest energy. Fig.
4c shows the energy for the different solutions and two different
values of the dimensionless parameter R!!!g consistent with our
experimental observations. If the sheet is large enough however,
the conical shape with one fold (Fig. 2a) is always the preferred

solution because the extra core bending energy is more than
compensated for by the reduction of the gravitational energy
caused by a single fold.

Scaling Laws for Complex Folds
When the sheet radius R!!g (( 1, a large number of folds is the
result; however, the lack of any symmetry along with the problem
of self-contact of the folds makes an exact analysis difficult.
Therefore, we use scaling arguments to tease out the general
trends of the solution. The gravitational energy can be mini-
mized by reducing the azimuthal deflection angle #, but this
process increases the number of folds (because of the inexten-
sibility condition) and hence the bending cost, so that the result
is an optimal number of folds minimizing the total energy. When
the folds are large in number and nearly vertical, , ! "!2, # ''1
and the kinematic equations (3 and 4) yield #̈ ! $. Then UB )
Bln(R!R!)#̈2 and UG ) h!gR3#2 * cst and their sum is a
minimum when UB ) UG. Using #̇ ) #!-s in the previous
relation leads to the characteristic arc length of a single fold
-s ) 1!'1/4 and the number of folds n is given by

n %
2"

-s #
%R!!g&

3/4

ln%R!R*&
1/4 [9]

an increasing function of the system size R.

gWe should also include the condition for global torque balance. Equivalently, g! + R!CM "
0, where R!CM is the center of mass. Here, the solutions of Eq. 7 identically satisfy the
balance for torques.

hOur definition of the number of folds is formally given by the number of times the
curvature changes sign as s varies from s " 0 to s " 2".

iSolving the linearized equations yields n-fluted conical shapes, of which the two-fluted
solution has the minimum energy. However, for large sizes of the ‘‘core’’ region R! where
the developable solution fails, the cylindrically deformed shape can have an even lower
energy and is preferred.
jThe generator at s " 0 is chosen as the point with maximal negative curvature.

Fig. 3. Bistability in conical folding. (a) Different views of the equilibrium
shapes obtained for ' ! 6.1 ( 'c. (Left) A cone with two folds. (Right) A cone
with one fold. (b) Dimensionless total energy 2U!Bln(R!R!) as a function of '.
The solid line corresponds to a conical shape with two folds, and the dotted
line corresponds to a cone with one fold. For small sheets with ' ' 'c only a
cone with two folds exists. For comparison, the dashed line shows the energy
of a big sheet with constant opening angle # " "!6 made by folding a
semicircle of the same material. (Inset) The energy following a linear analysis
of Eq. 7 matches the numerical solution for ' ' 2.
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η = (
R

lg
)3/ln(R/R∗)

U

κ̈ + (a2 + κ2/2)κ = −ηκ f(geometry)

We now expand our arguments to include stretching effects
and different geometries for the suspension frames. Consider the
draping of a circular table of radius Ri ! R, a test used by the
textile industry to quantify the ‘‘hand’’ (13) or the ability to drape
a body (Fig. 1d). Since the typical fold wavelength is much
smaller than the radius of the table for a heavy sheet, a Cartesian
description is sufficient to describe the problem, with x ! [0, L],
L " R # Ri, being the distance from the edge of the table, y the
azimuthal coordinate, T " h!g(L#x), the force due to gravity on
the sheet at a vertical distance x from the point of suspension,
and ! the deviation from a right cylinder of radius Ri (Fig. 1e).
The minimum gravitational potential energy state ! " 0 cannot
be achieved since the cost of bending the tablecloth is not small.
Indeed the bending energy UB " 1⁄2$AB("y

2!)2dA makes it trans-
parent that the total energy increases rapidly for short wave-
lengths. On the other hand, both the longitudinal component T
cos # % T % $ghL, which stretches the surface and the transverse
component T sin # % T# cause the tablecloth to become vertical
(Fig. 1e) as follows. The combination of the longitudinal curva-
ture of the sheet "x

2! % !!L2 and the longitudinal tension leads
to an out-of-plane pressure T"x

2! % T!!L2, which tends to favor
gravity and lower the sheet. Similarly the transverse component
of the force leads to an out-of-plane pressure T#!L % T!!L2 with
the same effect. These additional forces (per unit area) can be
derived from the energy of an ‘‘effective’’ elastic foundation (14)
supporting a thin sheet UF " 1⁄2$AK!2dA, where K % T!L2 %
h$g!L is the stiffness of the foundation. Comparing the bending
and stretching (gravitational) energies, we see that the optimal
wavelength scales as % % (B!K)1/4 % !g

3!4L1/4. Because the
number of folds n does not change from the edge of the table to
the end of the tablecloth of Fig. 1d, we conclude that %!R &

%i!Ri, %i being the wavelength at the edge of the table. Therefore,
n " 2&Ri!%i % R!(!g

3L)1/4. When R % L '' Ri, n % (R!!g)3/4,
corresponding to the result obtained in Eq. 8. For the circular
table in Fig. 1d, L & 40 cm, Ri & 12 cm ! L, and !g & 1 cm, so
that n & 15, consistent with the observations where n " 10.

We finally turn to the case when a sheet is suspended along a
line (Fig. 1c). In typical drapes and curtains, for aesthetic
reasons, the sheet is forced to bunch up to form a series of short
wavelength folds as its lateral ends are brought together by a
distance ( along the line of suspension. Away from the line, these
folds coalesce into larger and larger folds. This inverse cascading
of length scales can be understood in terms of the persistence
length Ld of a wrinkle in a stretched strip, defined as the distance
over which a sheet pinched at one end with an amplitude ! and
width %d eventually f lattens out. Balancing the stretching and
bending energies over the length Ld, yields UB % B(Ld%d)!2!%d

4 %
US % T(Ld%d)!2!Ld

2 so that Ld % %d
2(T!B)1/2. Comparing this with

the persistence length L for a fold of natural wavelength yields
Ld!L % (%d!%)2; for the drape (Fig. 1c), L & 250 cm, %d & 5 cm,
and % & 25 cm, so that Ld & 10 cm, consistent with observations.
This persistence effect might also explain the periodically placed
horizontal guy ropes in wrapped buildings (3), which serve to
accentuate the shape of the draped object while preserving the
aesthetics of the wrinkles. Seen differently, the natural wave-
length in this system is again % %!g

3!4L1/4, so that the number of
folds along the width W of the sheet is n " W!% % L#1/4

(corresponding to the case L !! Ri for the circular table),
decreases with system size, in marked contrast with the result for
a circular table, and consistent with observations.

Discussion
In conclusion, we have used a combination of analytical and
scaling arguments to quantify the basic components of a complex
drapery as a function of system size and the boundary conditions
(geometry of suspension). Our approach bridges the gap be-
tween simple cantilever analyses of cylindrical deformations (9,
12) and large-scale computation (6, 7), by focusing on those
aspects of the problem amenable to an approximate analysis.
Even restricting ourselves to simple geometries, we find that
qualitatively different shapes of the drapery may be separated by
relatively small energetic barriers. Thus it is easy to have dynamic
transitions between states. Indeed in fashion design and on
catwalks, this is precisely what gives rise to the aesthetic appear-
ance of a kinetic sculpture in motion. The inherent metastability
that we have uncovered even in the simplest of drapes shows that
previous purely computational approaches to fabric design could
be usefully complemented by qualitative approaches before we
can unravel the complexities of and transitions between multi-
stable patterns.

To go beyond the elements and piece them together to
complete the whole, we have to ‘‘stitch’’ the resulting cones,
cylinders, and flat sheets together much as a couturier does,
using boundary layers, narrow regions with relatively rapid
variations where one solution merges into another and where the
sheet will be both bent and stretched. The location of these
regions is determined by the requirement of energy minimiza-
tion (subject to the constraints of draping the rigid object).
However, the energy stored in the boundary layers is negligible
compared with the total energy (8), which is predominantly
stored in isometric bending. Then, it is possible to refine the
solution to account for such effects as finite stretching in the
regions of double curvature, the effects of textile anisotropy, and
other higher-order effects.

We thank Jacques Dumais for help with photography. E.C. acknowl-
edges the support of a Fundación Andes postdoctoral fellowship (2001),
Universidad de Santiago Departamento de Investigación Cientı́ficas y

Fig. 4. Transitions between different draping configurations. (a) A small
circular sheet of wrapping paper with radius R & 4!g deforms into a cylindrical
surface. (b) On the other hand, a circular sheet of rubber with radius R & 4!g

but with a thickness 50 times that of wrapping paper deforms into a cone. (c)
The dimensionless total energy for different solutions. To allow for compar-
isons with a cylindrical shape, we use 2U!B, instead of 2U!Bln(R!R!) and the
parameter R!!g instead of '. For wrapping paper R! & 1 mm and R!!!g & 0.03,
the minimal energy solution is cylindrical when R!!g ( 5 and a conical when
R!!g ) 5. (Inset) If R!!!g " 0.3, i.e., the core size is large, the conical shape is
energetically favorable for all R!!g.
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1. Description ?
2. Statics ? Dynamics ? 

A. 
Minimize energy + constraints...

Cerda, LM, (PRS (Lond) 2005)

Elastic energyflat bending+stretchingisometric bending
(inhomogeneous)(cylinders, cones, tangent

developables) κG = 0 κG != 0

H

Crumpled surfaces: κG = 0  except along peaks and ridges.
Peaks

These profiles collapse onto a single scaling curve. A more

quantitative test is based on the prediction for the variation

of the transverse radius of curvature along the ridge !i.e., at
"!0) Ryy!1/Cyy#q( x̃). The coefficients b2 and b4 in the

expansion Ryy( x̃)!Ryy(0)(1"b2x̃
2"b4x̃

4) can be ex-

tracted from the numerics and compared to those obtained

from Eq. !39$.
Here we can also test the dependence of the scaling on the

boundary conditions, which cause the ridge singularity. In-

stead of using a long strip bent by normal forces applied to

the boundaries we can consider any shape that in the limit of

zero thickness exhibits a sharp crease. One such shape cho-

sen due to ease of implementation is a regular tetrahedron,

which was previously used to verify the % scaling &21'. A
picture of one such minimum-energy tetrahedral surface is

presented in Fig. 4. Shading is proportional to the local

stretching energy. Figure 5 displays a plot of the coefficients

b2 !circles$ and b4 !squares$ versus the dimensionless thick-
ness % obtained by a least-squares fit to the functional forms
of Ryy in the range of " x̃"(0.2 for tetrahedra of varying
thicknesses but fixed edge length X!100a . We see that
these coefficients have a well defined limit as %→0, which is
approached algebraically. The extrapolations to %!0 give
b2!2.53#0.04 and b4!2.09#0.07, as compared to the pre-
dicted values of b2!2.47 and b4!2.03.
We tested the dihedral angle scaling by making a long

rectangular strip of dimensions 50a$200a and applying nor-
mal forces to its long boundaries so as to bend it by an angle

) . For all angles we fixed %!5$10%4. The results are dis-

played in Figs. 6 and 7. Figure 6 is a plot of the total elastic

energy in units of the bending modulus * vs the anticipated
scaling variable )7/3. To a good precision the energy does
indeed exhibit the predicted scaling behavior. The deviation

at the small bending angles is due to the finite-size effects.

Since the width of the ridge diverges as )→0, larger sheets
are needed for smaller angles to avoid finite-size effects. In

Fig. 7 the midridge curvature Cyy(0) in units of X
%1 is plot-

ted against )4/3. The data agree well with the scaling predic-
tion.

Another test relevant to the question of the boundary con-

dition dependence of the scaling predictions is the compari-

son of the coefficients R for different boundary conditions in

the asymptotic form of the total elastic energy of the ridge

E/*!R%%1/3)7/3. In a previous work &21' we found this
coefficient for the ridge appearing in the tetrahedral shape

described above. Its value, which was found by examining

the dependence of the energy on % for a fixed dihedral angle,
is R tet!1.161#0.003. For the long strip we have found
Rstrip!1.24#0.01 by fixing % and varying ) . Here the error
range reflects only the uncertainty arising from scatter in the

numerical data. However, there are additional errors resulting

from corrections to the asymptotic scaling not properly ac-

counted for in our crude fitting procedure. We therefore sus-

pect that the scaling coefficient R depends insensitively on

FIG. 3. Transverse curvatures Cyy(x ,y) for x!0 !circles$,
x!5 !squares$, x!10 !triangles$, and x!15 !diamonds$, each
scaled by Cyy(x ,0) vs the transverse coordinate y scaled by

Cyy
%1(x ,0). The curvatures are found numerically from a

50a$500a strip bent by a 90° angle.

FIG. 4. Tetrahedron of side X!100a and thickness

h!0.063a . Shading is proportional to the local stretching energy.
Note the ‘‘sagging’’ of the ridge.

FIG. 5. Scale factor expansion coefficients b2 !circles$ and b4
!squares$ as extracted from a least-squares fit to the functional form
of the transverse radius of curvature along the ridge for a tetrahedra

of X!100a .
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Two defects ?

κG = 0

Instability !

1, 2, .....∞ ?

 “Crumpulence” ?

Big crumples fold into little crumples
That store energy in bending
And little crumples have lesser crumples
And so on to stretching 

with apologies to Swift/Richardson

Core shape/scaling 

R∗

non-isometric
κG != 0

R∗ ∼ t1/3R2/3ε−1/3



Fluids do it too !

Stokes-Rayleigh analogy

Displacement Velocity
Strain Strain rate

Shear modulus Shear viscosity

Hookean solid Newtonian fluid

Ca = µU/σ ! 1+

i.e., free-surfaces are free !

LM et al, (Nature, 1998), Skorobogaity, LM 
(EPL; 2000); Silveira et al (Science, 2000)

elastic during the early stages of the rippling).
The rippling results from the competition

among compression, bending, and gravity.
Each fluid element tends to fall under its own
weight but experiences a viscous resistance
from its neighborhood. If the bubble were to
collapse in a uniform, symmetric way, it
would occupy a progressively reduced area,
leading to an in-plane compression, which
would require forces that far exceed the scale
set by gravity. Instead, the film deforms in a
nearly inextensional fashion by undergoing
pure bending. Equivalently, for a given (grav-
itational) force, the relative time scale asso-
ciated with stretching is much larger than that
for bending, and the surface therefore corru-
gates over short times before eventually re-
laxing into a uniform, thicker membrane.

This instability is reminiscent of buckling
phenomena (2), originally studied in the context
of elastic rods but also occurring in the creeping
flows of viscous liquid filaments [a striking
everyday example being the coiling of a stream
of honey when it reaches a piece of toast (3, 4)].
For an elastic rod, buckling occurs at the long-
est possible wavelength in order to minimize
the bending energy. In the bubble problem,
however, gravity plays a distinctive role in de-
termining the configuration. For a given ampli-
tude, bending still favors large-scale deforma-
tions, whereas gravitational energy is mini-
mized for an almost flat sheet with as many tiny
ripples as possible; the optimal wavelength re-
sults from a compromise between the two. Such
an argument, however, does not fully charac-
terize the effect. Unlike the above examples,
here the system under consideration is a curved
two-dimensional sheet, and the associated ge-
ometry constrains the rippling both qualitative-
ly and quantitatively (see below).

The instability occurs in both elastic (solid)
and viscous (liquid) films. The elastic case cor-
responds to a shell with a hole of radius R,
allowed to collapse under its own weight. In the
viscous case, an additional complication arises

because the radius of the hole changes during
the rippling. After a short initial transient, the
hole grows steadily at a rate v ! "/# resulting
from the balance of surface tension (" $ 20
mN/m) and viscous stress. It thus takes a time
% ! #t/" for the opening radius to increase by t.
During this time, the liquid acquires a velocity
V ! g% due to gravity, larger than v by a factor
V/v ! 107. Even if the liquid is viscoelastic, so
that the retraction velocity is enhanced by a
factor R/t (! 10 to 104) (1, 5), the hole radius
remains essentially constant while the instability
occurs (Fig. 1). We may therefore treat the hole
radius R as a given parameter in the theory (6).

Although the bubble has the geometry of a
sphere before collapsing, it is quite flattened
by the time the ripples appear (Fig. 1B). For
simplicity, we consider the unperturbed con-
figuration to be a shallow cone of slope & ''
1, described by its height above the surface,

h ( &(r0 ) r) (1)

where r is the cylindrical radial coordinate
and r0 is the radius of the base. Any defor-
mation of h introduced by the rippling may be
written, without loss of generality, as

h * +h ( &(r0 ) r) ) +&(r)

! !
n"1

[+,n
(1)(r) cos(n-)

! +,n
(2)(r) sin(n-)] (2)

where - is the azimuthal angle. The per-
turbation +& represents a uniform (n inde-
pendent) flattening accompanying the growth
of ripples of amplitude +,n

(i), and a crucial
step consists in understanding their form and
interdependence.

In the case of a thin elastic (viscous) sheet,
the two primary modes of deformation are in-
plane stretching (shearing) and out-of-plane
bending. A generic deformation of an elastic
cone (made of a material with Young modulus
Y ), of amplitude . on a scale !, requires stretch-

ing forces (per unit surface) of order Yt./!2 but
much smaller stretching forces (per unit sur-
face) of order Yt3./!4 (7), so that for a given
external drive (gravity in our case), inexten-
sional deformations are greatly preferred (8). In
the case of a highly viscous sheet, forces arise
from velocity gradients, thus introducing a dy-
namical element into the problem. However,
their dependence on t and ! (essentially due to
the variation of the strain across the film) is
similar, so that inextensional deformations are
again largely favored if t '' ! $ r0/n*. (This
condition is satisfied if the selected number of
ripples n* is small relative to 103, as in the
present case; see below.) Equivalently, for a
given loading, the time scale corresponding to
bending is smaller than that for stretching by a
factor (t/!)2 (9, 10). Thus, at the onset of the
instability, perturbations of the cone must pre-
serve its metric. This requirement translates into
the constraints (11)

+,n
(i)(r) ( +,n

(i) / r * +,n
(i)0 (3)

where +,n
(i) and +,n

(i)0 are constants, and

4&+&1r) ( !
n"1, i

[(n2 ) 1)+,n
(i)2(r ) r0)

! n2+,n
(i)02(1/r ) 1/r0)] (4)

In the following, we elucidate the elastic
(solid) case before extending our treatment to
the viscous (liquid) case. The energy func-
tional of a perturbed elastic cone is

E[h * +h] ("
cone

d(surface) / (gravitational

potential energy * bending potential energy)

# "
R

r0

r dr "
0

22

d- #1 * [3(h * +h)]2

$ 45g(h * +h) * (K/2)(32+h)2] (5)

Fig. 1. Stroboscopic
images of a collapsing
liquid bubble of size
r0 ( 1 cm and thick-
ness t $ 100 5m. The
silicone oil has viscos-
ity # ( 103 Pa!s, sur-
face tension " ( 21
mN/m, and mass den-
sity 0.98 g/cm3. (A)
The bubble 30 ms af-
ter the film is punc-
tured by a sharp nee-
dle. A retracting hole
(radius R ( 1.4 mm) is visible, but there are no ripples yet. (B) After another
30 ms, the bubble loses its axisymmetric shape. The radius of the hole
remains essentially constant, at R ( 1.6 mm, while the ripples grow. The
inset in (B) displays a schematic side view of the essentially conical deflating
bubble at the onset of the instability, with the important quantities involved
in the phenomenon. The extreme shallowness allows for a perturbative
treatment in the slope & of the cone.
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among compression, bending, and gravity.
Each fluid element tends to fall under its own
weight but experiences a viscous resistance
from its neighborhood. If the bubble were to
collapse in a uniform, symmetric way, it
would occupy a progressively reduced area,
leading to an in-plane compression, which
would require forces that far exceed the scale
set by gravity. Instead, the film deforms in a
nearly inextensional fashion by undergoing
pure bending. Equivalently, for a given (grav-
itational) force, the relative time scale asso-
ciated with stretching is much larger than that
for bending, and the surface therefore corru-
gates over short times before eventually re-
laxing into a uniform, thicker membrane.

This instability is reminiscent of buckling
phenomena (2), originally studied in the context
of elastic rods but also occurring in the creeping
flows of viscous liquid filaments [a striking
everyday example being the coiling of a stream
of honey when it reaches a piece of toast (3, 4)].
For an elastic rod, buckling occurs at the long-
est possible wavelength in order to minimize
the bending energy. In the bubble problem,
however, gravity plays a distinctive role in de-
termining the configuration. For a given ampli-
tude, bending still favors large-scale deforma-
tions, whereas gravitational energy is mini-
mized for an almost flat sheet with as many tiny
ripples as possible; the optimal wavelength re-
sults from a compromise between the two. Such
an argument, however, does not fully charac-
terize the effect. Unlike the above examples,
here the system under consideration is a curved
two-dimensional sheet, and the associated ge-
ometry constrains the rippling both qualitative-
ly and quantitatively (see below).

The instability occurs in both elastic (solid)
and viscous (liquid) films. The elastic case cor-
responds to a shell with a hole of radius R,
allowed to collapse under its own weight. In the
viscous case, an additional complication arises

because the radius of the hole changes during
the rippling. After a short initial transient, the
hole grows steadily at a rate v ! "/# resulting
from the balance of surface tension (" $ 20
mN/m) and viscous stress. It thus takes a time
% ! #t/" for the opening radius to increase by t.
During this time, the liquid acquires a velocity
V ! g% due to gravity, larger than v by a factor
V/v ! 107. Even if the liquid is viscoelastic, so
that the retraction velocity is enhanced by a
factor R/t (! 10 to 104) (1, 5), the hole radius
remains essentially constant while the instability
occurs (Fig. 1). We may therefore treat the hole
radius R as a given parameter in the theory (6).

Although the bubble has the geometry of a
sphere before collapsing, it is quite flattened
by the time the ripples appear (Fig. 1B). For
simplicity, we consider the unperturbed con-
figuration to be a shallow cone of slope & ''
1, described by its height above the surface,

h ( &(r0 ) r) (1)

where r is the cylindrical radial coordinate
and r0 is the radius of the base. Any defor-
mation of h introduced by the rippling may be
written, without loss of generality, as

h * +h ( &(r0 ) r) ) +&(r)
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where - is the azimuthal angle. The per-
turbation +& represents a uniform (n inde-
pendent) flattening accompanying the growth
of ripples of amplitude +,n

(i), and a crucial
step consists in understanding their form and
interdependence.

In the case of a thin elastic (viscous) sheet,
the two primary modes of deformation are in-
plane stretching (shearing) and out-of-plane
bending. A generic deformation of an elastic
cone (made of a material with Young modulus
Y ), of amplitude . on a scale !, requires stretch-

ing forces (per unit surface) of order Yt./!2 but
much smaller stretching forces (per unit sur-
face) of order Yt3./!4 (7), so that for a given
external drive (gravity in our case), inexten-
sional deformations are greatly preferred (8). In
the case of a highly viscous sheet, forces arise
from velocity gradients, thus introducing a dy-
namical element into the problem. However,
their dependence on t and ! (essentially due to
the variation of the strain across the film) is
similar, so that inextensional deformations are
again largely favored if t '' ! $ r0/n*. (This
condition is satisfied if the selected number of
ripples n* is small relative to 103, as in the
present case; see below.) Equivalently, for a
given loading, the time scale corresponding to
bending is smaller than that for stretching by a
factor (t/!)2 (9, 10). Thus, at the onset of the
instability, perturbations of the cone must pre-
serve its metric. This requirement translates into
the constraints (11)

+,n
(i)(r) ( +,n

(i) / r * +,n
(i)0 (3)

where +,n
(i) and +,n

(i)0 are constants, and

4&+&1r) ( !
n"1, i

[(n2 ) 1)+,n
(i)2(r ) r0)

! n2+,n
(i)02(1/r ) 1/r0)] (4)

In the following, we elucidate the elastic
(solid) case before extending our treatment to
the viscous (liquid) case. The energy func-
tional of a perturbed elastic cone is

E[h * +h] ("
cone

d(surface) / (gravitational

potential energy * bending potential energy)

# "
R

r0

r dr "
0

22

d- #1 * [3(h * +h)]2

$ 45g(h * +h) * (K/2)(32+h)2] (5)

Fig. 1. Stroboscopic
images of a collapsing
liquid bubble of size
r0 ( 1 cm and thick-
ness t $ 100 5m. The
silicone oil has viscos-
ity # ( 103 Pa!s, sur-
face tension " ( 21
mN/m, and mass den-
sity 0.98 g/cm3. (A)
The bubble 30 ms af-
ter the film is punc-
tured by a sharp nee-
dle. A retracting hole
(radius R ( 1.4 mm) is visible, but there are no ripples yet. (B) After another
30 ms, the bubble loses its axisymmetric shape. The radius of the hole
remains essentially constant, at R ( 1.6 mm, while the ripples grow. The
inset in (B) displays a schematic side view of the essentially conical deflating
bubble at the onset of the instability, with the important quantities involved
in the phenomenon. The extreme shallowness allows for a perturbative
treatment in the slope & of the cone.

R E P O R T S

www.sciencemag.org SCIENCE VOL 287 25 FEBRUARY 2000 1469

where K ! Yt3/12(1 " #2) is the rigidity and
# is the Poisson ratio. Only bending elastic
energy appears in E, because we have con-
fined ourselves to the class of inextensible
deformations.

If the elastic cone is attached to the plane
on which it rests, so that $h(r ! r0) ! 0, Eq.
3 yields $%n

(i)& ! "$%n
(i)r0. On substituting

Eqs. 2 through 4 into Eq. 5 we then obtain, to
lowest order in the perturbation,

$E ' E[h ( $h] " E[h] ! ()/2)K ! f (r0/R)

! !
n!1, i

($%n
(i))2{g(r0/R, *R3) ( 2[+(r0/R)

" *R3,(r0/R)]n2 ( n4} ' !
n!1

$En (6)

where +(x), ,(x), f(x), and g(x,y) are defined

in (12). *–1/3 ! (-K/.g)1/3 is an intrinsic
length scale arising from the competition be-
tween gravity and bending elasticity.

Each mode contributes an amount $En to
the change in energy, and rippling occurs if
$En / 0 for some integer. In general, $En /
0 for a range of different n’s; the most neg-
ative variation corresponds to the maximally
growing perturbation and thus sets the wave-
length of the instability. The formulation also
yields a “threshold condition” +(r0/R) /
*R3,(r0/R) for the occurrence of rippling.
This condition involves the three independent
quantities *, r0, and R, and may be translated
into three corresponding statements: (i) Rip-
pling is suppressed if * / *c(r0,R) ! R–3+/,,
i.e., if the cone is too light or too rigid. (ii)
Similarly, no rippling occurs if the hole, or

equivalently the cone, is too small, r0 /
r0c(*,R). Azimuthal continuity requires the
wavelength of the deformation to be at most
of order r0, resulting in a forbidding bending
cost if r0 becomes small relative to the intrin-
sic (energetically determined) scale *–1/3. (iii)
The threshold also depends, quite unexpect-
edly, on the ratio r0/R. The dependence of the
symmetric (n ! 0) mode on the radial coor-
dinate r is different from that of the rippling
(n 0 0) modes, so that the high elastic cost
can no longer be justified by gravitational
gain if the hole is reduced beyond a critical
size. Minimizing $E in Eq. 6 yields the se-
lected number of ripples as

n* ! Int" .gR3

K
!

1
-

,# r0

R$ – +# r0

R$ (7)

where Int x is the integer closest to x. This
relation improves on the estimate in (1)
(where the authors consider a short-time elas-
tic behavior) and establishes its domain of
validity.

For an elastic (solid) sheet, the rippling phe-
nomenon is of an essentially static nature; upon
increasing, say, the mass of the sheet, the equi-
librium configuration is shifted from symmetric
to rippled. Approaching the problem from a
dynamical perspective, by considering the elas-
tic forces and torques rather than the corre-
sponding energies, results in an evolution equa-
tion ).P(r0,R)!d2($%n

(i))/dt2 ! –$E/$%n
(i) for

each mode. Here P is a polynomial function
independent of n, so that the energetically op-
timal mode, with number n*, is indeed the
fastest growing one. In the case of a viscous
liquid, the effect is intrinsically dynamical:
Bending occurs only over short times, whereas
the equilibrium configuration is ultimately
reached by a slow thickening. Nevertheless, the
motion of a viscous film satisfies a formulation
close to that of an elastic sheet, as can be shown
by integrating the Stokes equation through the
thickness (10, 13). Indeed, it is easy to see that
bending results from a torque 1t3/[4(1 – #2)] 2
d(curvature)/dt analogous to an elastic torque
K 2 (curvature), so that a highly viscous film
may be described by an effective bending mod-
ulus Kl ! 1t3/33 (# ! 1/2 for an incompressible
medium), where 3 is a time scale associated
with the falling velocity. Thus, all the conclu-
sions of the stability analysis for the elastic
cone, and in particular the expression for the
number of ripples (Eq. 7), can be transposed to
the case of the bubble except for a certain time
scale related to the gravity-induced velocity of
the fluid. Comparing the nascent ripples’ am-
plitude with the film thickness yields an esti-
mate of this time scale as (t/g)1/2 (14).

To check our results against experiment, we
visualized the bursting of silicone oil bubbles.
Once the bubble is punctured with a sharp
needle, its evolution is followed using a high-
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Fig. 2. (A) Plot of the
number of ripples n* as
a function of the bub-
ble radius r0, comparing
the experimental mea-
sures (points) with the
theoretical predictions
(solid lines). These data
were gathered using sil-
icone oil of viscosity
1 ! 600 Pa!s and bub-
bles of thickness t 4
30 .m. The errors in
the measurement of r0
arise from meniscus ef-
fects, which are more
important in smaller
bubbles. The bursting
time elapsed up to rip-
pling is measured to be
of order one to five
times (t/g)1/2, consistent
with our proposed
mechanism for the
formation of the cor-
rugation. For each ex-
perimental realization, the ratio r0/R was measured
at the onset of the instability, and the correspond-
ing dependence of R on r0 was used to obtain a
theoretical curve n* ! n*(r0). The green line dis-
plays the prediction for an elastic sheet attached to
the plane on which it rests. Because the liquid
cannot be clamped, the boundary conditions at the
base must be relaxed. This leads to a vanishing of
the unprimed modes (Eq. 3) that are unfavorable in
terms of both gravitational and viscous forces; the
fastest growing primed modes lead to the behavior
represented by the purple line. The latter is plotted
here for a slope - 4 3° (4 0.05 rad) of the cone,
which is consistent with our perturbative treatment
and in agreement with direct observation. The blue
line represents the best fit of the scaling form n* 5
(.gR3/K)1/2 (1), where R is chosen as the relevant
length scale. If R is replaced by r0, the above expres-
sion for n* may be closely fitted (up to an overall multiplicative factor) to our predicted curve,
hence the size of the bubble is the dominant length scale within the present experimental range
and conditions. This is consistent with the relaxed boundary conditions, which allow the ripples to
be appreciable, close to the outer edge of the bubble (see also Fig. 1B). In this way, the ripples trade
a bulk gain in gravitational and bending stresses against a cost in stretching in a thin rim close to
the outer edge. The increased thickness of the liquid film close to the base further emphasizes this
effect, as it reduces the difference in magnitude between a typical stretching and a typical bending
stress. (B) Top view of the fully developed ripples, from which n* is measured.
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Rippling of a collapsing bubble
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Q.
- Localized deformations ?
- Arc-like ? Straight ?
- Polarity  ?

LM, Bendick, Liang (2008)Island arcs ? Shellular subduction

-  Incomplete spherical cap 
-  Finite thickness, complex rheology
-  Mantle resists deformation
-  Variable buoyancy

 No ! 
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Stability of (partially) negatively buoyant lithosphere ?
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Figure 3: Deformations of a thin doubly curved shell under localized and 

homogeneous loading. (Left) A localized indentation force on a large plastic ball 

(h/R ~0.007; for earth, h/R ~0.006) produces a polygonal faceting instability with 

nearly straight stretching zones, curved vertices, and convex internal lobes.  The 

same instability occurs in an indented cap cut from a ping pong ball (inset). 

(Right)  A spherical balloon that was inflated and then painted with multiple coats 

of a rubberized paint to mimic the crust (h/R = 0.015) is deflated partially (by 

10%) to simulate the effects of a homogeneous gravitational loading on the 

doubly curved lithosphere.  This body force produces a dimpling instability with 

concave inward arcuate dimples separated by cuspate syntaxes that occurs first 

at the soft edge of the rubberized coat.  Parameters used in the analysis are 

labeled as in figure 1 (See Supplementary Information). 

 

-  Free edge ... geometrically soft, physically dense.

- Subduction onset - reduction in effective perimeter 

- i.e. edge buckling !

Bendick

λ ∼ 500km

n ∼ W/λ ∼ 1 − 5

but subcritical instability -  
 i.e. heterogeneity dominated ... 

Liang

- Polarity - ok 
- Localized deformations - ok
- Arc-like ? Straight ? - ok

(Stokes-Rayleigh analogy)
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Lessons:  geometry + simple physics  = rich field to mine

Questions:

Crocheted hyperbolic plane

D. Taimina, S. Rowel (2000)

- Non-Euclidean geometries ? 

scaling estimate will include studies of the energy landscape of the
folded structures and the kinetics of the folding process.

Three-Dimensional Electrical Circuit. We used this strategy to gen-
erate elementary 3D electrical circuit (Fig. 6). We fabricated each
section of a sheet having the design shown in Fig. 6a to include an
electrically isolated wire (see supporting information for fabrication
details). This wire connected the cathode and the anode of a LED
to two pairs of solder pads placed at the tips of each section, near

the edge of the membrane; these solder pads were intended to
provide electrical connectivity between LEDs placed on adjacent
sections of the sheet. The solder features (wires and contact pads)
were embedded within the PDMS membrane, with the wires close
to the middle surface of the sheet that is not stretched when rolled
into a cylindrical surface (29, 30) (Fig. 6b). When cutting the sheet
to shape, we cut through the outside edges of the embedded solder
pads and, thus, produced four edges exposing bare solder adjacent
to the magnets at the tips of each section. For self-assembly, we
suspended the sheet in water at 60°C (the melting temperature of
the solder was 47°C) and agitated gently. Within 1–3 min, the planar
sheet folded into a sphere; simultaneously, electrical connections
formed between the six sections by fusion of the drops of molten
solder (Fig. 6c). The heat also restored the electrical continuity of
wires that had broken during bending of the flat sheet. After
self-assembly was complete, and the resulting structure had cooled
to room temperature and dried, we connected one top and one
bottom contact pad to a battery. Fig. 6d shows that all six LEDs
illuminate and demonstrates the continuity of an electrical circuit
that traces a path through all six sections of the structure.

Conclusions
This work describes an intriguing new strategy for formation of 3D
structures starting with 2D sheets and suggests a new route to 3D
electrical circuits. It combines concepts extracted from biology (e.g.,
self-assembly, folding of flexible precursors in 3D, and stabilization
of 3D structures by dipole–dipole interactions) with processes and
objects familiar from the world of man-made fabrication (e.g.,
planar patterning, elastomeric polymer membranes, and formation
of closed loops of magnetic dipoles).

This work also identifies a remarkably interesting problem in
applied mathematics: the analytical design of planar sheets that
can fold into 3D structures with minimized global (magnetic and
mechanical) free energy. Answering the core question—how to
translate a global goal (designing and generating a stable 3D
structure) into local interactions defined by the shape of the 2D
cut, the placement of the magnetic dipoles, and the mechanical
characteristics of the membrane—will require further develop-
ment in both fabrication and applied mathematics.

This approach combines the efficient methods of photo- and soft
lithography for fabrication of flat, patterned surfaces with self-
assembly to form 3D from 2D structures. It can be generalized to
other interactions (e.g., interactions between patterned electrical
monopoles or dipoles, and capillarity) and to a broad range of
materials. This strategy is relevant to the fabrication of ‘‘soft’’
electronics (31) (e.g., displays, thin film transistors, and sensor
skins) and deployable structures (32). The most immediate problem
that should be solved in moving toward applications is to improve
the method of fabrication of the precursor membranes. In principle,
both fabricating the sheet (with embedded electrical components)
and patterning the magnetic dipoles can be accomplished by using
planar microfabrication (33, 34).
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Fig. 6. Self-assembly of a simple electrical circuit surrounding a spherical
cavity. (a and b) Schemes of the patterned, planar sheet before self-assembly,
in top view and cross section along x–x!, respectively. (c) Self-assembly gen-
erates parallel electrical connections between the six light-emitting diodes
(LEDs). The solder wires are shown as thick solid lines, the copper wires
connecting the self-assembled structure to a battery as thin solid lines, and the
electrical connections formed between the LEDs during self-assembly as thin
dotted lines. (d) Photograph of the self-assembled spherical structure con-
nected to a battery.
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M. Boncheva et al. (PNAS 2005)

Self assembly in 3D

- Cuts, tears and stitches ? 

Defect mediated Transitions  

Experiment (10000 frames/s) ! 

- Dynamics and wave turbulence ?


