(

Outline:

- A little geometry and physics
- An example - wrinkling of a multi-walled nanotube
- A generalized theory - of skins and elephant trunks ...
- The art of the coutourier - the elements of a drape
- The elements of crumpling - Gauss' Theorema Egregium, Monge Ampere ...
- Dynamics, rheology and fluctuations - more questions...
theory:
- E. Cerda
- S. Rica
- H. Liang
experiments:
- J. Bico
- F. Melo
- J. Genzer
- R. Bendick

Q?

- Stretching dominated ?

$$
\begin{gathered}
\text { Packing constraint } \\
U_{e}=C_{1}(\operatorname{Tr} \kappa)^{2}+C_{2} \operatorname{Det} \kappa+C_{3}(\operatorname{Tr} \gamma)^{2}+C_{4} \operatorname{Det} \gamma
\end{gathered}
$$

- Bending dominated?
- Inhomogeneous

Elastic energy

Equations of equilibrium ?
Geometry $\quad[x, y, 0] \rightarrow[x+u(x, y), y+v(x, y), w(x, y)] \quad$ e.g. Monge gauge
Physics $\quad \sigma=\mathbf{C} \gamma \quad$ linear stress-strain law

$$
\begin{array}{ccc}
\frac{E t^{3}}{12\left(1-\nu^{2}\right)} \nabla^{2}(\operatorname{Tr} \kappa)=\operatorname{Tr}(\sigma \kappa) & \text { normal force balance } & \\
\nabla^{2}(\operatorname{Tr} \sigma)=-E t(\operatorname{Det} \kappa) & \text { geometric compatibility } & \begin{array}{c}
\text { Foppl, von Kamman (1907) } \\
+ \text { B.C. }
\end{array} \\
\text { - No 2-d analytical solutions ! } & & \operatorname{Tr}(\sigma \kappa) \approx 0
\end{array} \begin{aligned}
& \text { almost planar } \\
& \text { (except for wrinkles) }
\end{aligned}
$$

$$
\epsilon=t / l \ll 1
$$

Det $\kappa \approx 0$
almost isometric (except for crumples)

Wrinkling
Multi-walled carbon nanotube Rubber scroll

Poncharal et al. (2002)
n number of layers

t thickness (1 atom !)

stretching

$$
R \sim n t \quad \lambda=t f(n)
$$

$$
\kappa_{w} \sim A / \lambda^{2} \quad \epsilon \sim A / R
$$

Energy/area $\quad U_{B}+U_{S} \sim\left[E t^{3} \kappa_{w}^{2}+E t \epsilon^{2}\right] R L$ $+$ bending

$$
\longrightarrow \quad \frac{U}{R L} \sim E t R \kappa\left(\frac{t^{2}}{\underline{\lambda}^{2}}+\frac{\lambda^{2}}{R^{2}}\right)
$$

$$
[\lambda(1-R \kappa)]^{2}+A^{2} \approx \lambda^{2}
$$

$$
A^{2} / \lambda^{2} \sim R \kappa
$$

- No dependence on material
- Wavelength + Amplitude ... nonlinear
- Geometric theory

"Ganesha" instability

Ingredients for a theory of wrinkles:

- "Packing" constraint $\Delta \sim R \kappa$
- Bending energy penalty $E t^{3}$
- "Mattress" of springs $\quad K \sim E t / R^{2}$

$$
\lambda \sim\left(\frac{E t^{3}}{K}\right)^{1 / 4} \quad A \sim \Delta^{1 / 2} \lambda
$$

Skin?

Compression

Tension

Cerda, LM (PRL 2003)

Controllable 1-d wrinkling patterns :

In-vivo

Rizzieri et al. (2005)

In-silico

Newell-Whitehead-Segel eqn. (1969)

$$
\epsilon A+h^{2}\left[\left(\partial_{x}-\frac{i}{\partial_{y y}}\right)^{2}-g|A|^{2}\right] A=0
$$

(differential) shrinkage - a model for morphogenesis ?

Elements of a drape ?

point \# of folds \# of folds
"gravity" length
$l_{g} \sim\left(\frac{E t^{2}}{\rho g}\right)^{1 / 3} \sim O(\mathrm{~cm})$
gravity $=$ "spring"
tension $\quad T \sim \rho g t L$
$K \sim T / L^{2} \sim \frac{\rho g t}{L}$

curve $n \sim \frac{L}{\lambda} \sim\left(\frac{L}{\bar{l}_{g}}\right)^{3 / 4} \quad n \sim \frac{W}{\lambda} \sim \frac{W}{\underline{L}^{1 / 4} l_{g}^{3 / 4}} \quad \begin{gathered}\text { "persistence" }{ }^{i} \sim \lambda_{p}^{i^{2}} \\ \text { wrinkle a }\end{gathered}$

Inverse cascade $n \sim \frac{L}{\lambda} \sim\left(\frac{L}{\bar{l}_{g}}\right)^{3 / 4} \quad n \sim \frac{W}{\lambda} \sim \frac{W}{\underline{L}^{1 / 4} l_{g}^{3 / 4}} \quad \begin{gathered}\text { "persistence" of a } \\ \text { wrinkle }\end{gathered}$ $\underline{L}^{1 / 4} l_{g}^{3 / 4}$

Configurational multi-stability?

Developable cones ... $\quad \eta=\left(\frac{R}{l_{g}}\right)^{3} / \ln (R / R *)$

$$
\ddot{\kappa}+\left(a^{2}+\kappa^{2} / 2\right) \kappa=-\eta \kappa \quad \mathrm{f}(\text { geometry })
$$

observations

Symmetry breaking bifurcations and "catwalk transitions" ?

Crumpling

Q.

1. Description?
2. Statics ? Dynamics ?
A.

Minimize energy + constraints...

$\xrightarrow{\text { flat }}$| isometric bending |
| :---: |
| (cylinders, cones, tangent |
| developables) |$\kappa_{G}=0$| (inhomogeneous) |
| :---: |
| $\kappa_{G} \neq 0$ |\quad Eending+stretching \quad Elastic energy

Crumpled surfaces: $\kappa_{G}=0 \quad$ except along peaks and ridges.

Ridges

Witten et al. (1995)

Q.

1. Structure (shape) of "defects" ?
2. Response ?
3. Interaction? H, He, ...
4. Dynamics?

Fluids do it too !

Stokes-Rayleigh analogy

Hookean solid	Newtonian fluid
Displacement	Velocity
Strain	Strain rate
Shear modulus	Shear viscosity

$$
+\quad C a=\mu U / \sigma \gg 1
$$

i.e., free-surfaces are free !

Wrinkling of a sheared annular film

Rippling of a collapsing bubble

Island arcs ? Shellular subduction $\quad R / h \sim 6000 / 60 \sim 100$

Curvature of Island Arcs

A flexible but inextensible thin spherical shell may be bent inwards through an angle θ on and only on a circle whose radius of curvature (expressed in angular measure metrical construction involving two pequal intersectin metrical construction involving two equal intersecting
spheres, and can be demonstrated on a punctured ping. spheres, and can be demonstrated on a punctured ping.
pong ball. This affords a simple explanation of the shape of island ares and related arcuate geographical structures.

- F. C. Frank

Department of Physics
1968
Department of Physi
University of Bristol.

No!

Q.

- Localized deformations?
- Arc-like ? Straight ?
- Polarity?
- Incomplete spherical cap
- Finite thickness, complex rheology
- Mantle resists deformation
- Variable buoyancy

Stability of (partially) negatively buoyant lithosphere? (Stokes-Rayleigh analogy)

Bendick

- Free edge ... geometrically soft, physically dense.
- Subduction onset - reduction in effective perimeter
- i.e. edge buckling !

Elastic model $\quad U_{e} \sim E_{l} h_{l}^{3} R \frac{w^{2}}{\lambda^{3}}+E_{l} h_{l} \frac{w^{2}}{R} \lambda+\frac{E_{m}}{H_{m}} w^{2} R \lambda$
lithosphere lithosphere mantle
bending stretching deformation

$\lambda \sim\left(\frac{\mu_{l} h_{l}^{3} H_{m}}{\mu_{m}}\right)^{1 / 4} \quad$ soft / viscous mantle model ...

Liang

$\lambda \sim 500 \mathrm{~km}$

$$
n \sim W / \lambda \sim 1-5
$$

but subcritical instability -
i.e. heterogeneity dominated ...

Lessons: geometry + simple physics = rich field to mine

Questions:

