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From building blocks of biological systems 
to understanding of biological behaviors

transcription
translation

regulation

Biological behaviors
Systems Biology

DNA Proteins

Genomic sequences
Bioinformatics

3-D structures
Protein Folding

Biological Network

How do bio-molecules interact to give rise to biological behaviors?



Biological systems are complex
• Many different types of molecules involved.
• Heterogeneous Interactions (temporally/spatially).
• Many missing elements (nodes)/links in the interaction network.
• Many kinetic constants are unknown.

We need “Hydrogen atom” in systems biology!

Important example of signal transduction and sensory system in biology 

Best chance in quantitatively understanding a complex biological system

General principles in understanding complex biological systems

Adaptation; Signal Processing; Robustness; Effect of Noise …..

Chemotaxis in bacteria (E. coli)
General behavior in simple model systems 



E. coli anatomy and chemotaxis

2 mµ

~ 10Flagella mµ
Receptors

Flagellar Motor Nucleoid region Ribosomes

Reproduce every ~20 minutes
Under normal condition

How cells 1) receive signal; 2) process signal and 3) react to signal



The biased random motion of E. coli: run & tumble

(From the Berg lab)

run tumble

Switch between tumble and run by comparing current environment 
with some memory encoded internally 

(Berg & Brown , 1972)

Biased random-walk



The cell as a molecular information processor

Temporal comparison ~ ( ) ( )C t C t t− − ∆

t t− ∆

t
Because the cell moves x v t∆ = ∆

The cell effectively calculates the spatial gradient of C

How does cell keep a memory of its past history?

How does it carry out the calculation of gradient?

Current Past

How is the memory/computation performed by the molecules?



(KEGG database)

The E. Coli chemotaxis signaling pathway 
(A molecular signal processing machine)

Signal transduction
(sensing, amplification, adaptation…..) Switch

Motor



The key molecules for E. Coli chemotaxis signaling 

Total number of
Receptors:
15,000-26,000

Tsr:Tar:Trg(Tap,Aer)~2:1:0.1

(Li and Hazelbauer, Journal of Bacteriology, 186(12),  3687 (2004)) 

The chemo-receptor (sensor)

(5 types of chemoreceptor)



How can physics (modeling) help biology?

•External perturbation
(chemical,physical stimuli)

TkB pH

•Internal perturbation
(mutations)

•Observed Response
mRNA levels

Protein concentrations

Behavior

Quantitative 
Model

Network properties
•Missing links & nodes
•Relation between links

•The numbers on the links

For complex systems, 
quantitative modeling
is necessary to identify:

Understand and 
predict complex
Biological behavior

?

(ligand)F



Probing the cell in vivo by perturbations
Direct in vivo measurement of CheYP level by FRET

(Sourjik&Berg, PNAS 99 123-127 (2002))
(Fluorescence Resonance Energy Transfer)

Molecular level measurement while the cell is alive and behaving

CheY CheZ

YFPCFP

Cyan
excitation

Cyan
emission

Yellow
emission

CheY CheZ

YFPCFP

Cyan
excitation

Cyan
emission

Yellow
emissio

n

P

Resonance energy transfer

attractant

repellent

input

Output



The response data for wt and different mutants

(from the Berg Lab)

Different Tar/Tsr expression levels

Different methylation levels

………

WT in different background



High gain in a wide dynamic range for E. coli chemotaxis 

High sensitivity (~10’s nM, a few ligand molecules)
Signal amplification (~40X)

High sensitivity exists in a wide range of backgrounds
Wide dynamic range (100nM 1mM)

Near perfect adaptation

Stimulus

Activity

Time

II. Adaptation kinetics

I. Immediate Responses

III. Adapted states

Input

Output

?



Energetics and the steady state 
behavior of the system 



The energetics of a receptor dimer

•4 states for each individual receptor i

1,0=ia

1,0=il

•Kinase activity

•Ligand binding
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The methylation energy function

(Shimizu et al. PNAS 2006) (Shimizu et al. unpublished)
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Chemotaxis receptors form clusters at the cell poles

Chemoreceptors cluster in bacteria
(~20,000 chemo-receptors in a E. Coli cell)

(Maddock & Shapiro, 1993)
(Lybarger & Maddock)

(Subramanian Lab, NCI)
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The receptor-receptor interaction within the polar cluster

Tar Tsr

C12

C11

C21

C22

Ising type model (nearest neighbor) MWC type model (all-or-none)

NC  sizecluster   within ∞→

correlation region All-or-none region

Simplicity (analytical solution)More realistic

Non-discriminative Interaction between 
heterogeneous receptors

They act together
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•j labels all the “neighboring” receptors of i’th receptor

The Ising-like model for receptor Interaction

Tar Tsr

C12

C11

C21

C22

Interaction energy =

•Activity of a receptor affected by the activities of its neighbor in 
the receptor cluster. Cooperativity in a continuum lattice.
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Analogous to the Ising model for magnetism in physics
“local magnetic field”“Spin” “coupling to neighbors”



The model results for the cheRB- mutant strains

0m 1m
Tar Tsr

0 0

2 2
1

3
4 4

# of parameters in the model: 3x8+4=28
# of independent data points: ~6x7=42

Exp.---symbols
Theory ---lines

Adaptation disabled: Receptor methylation level fixed

(Sourjik& Berg, PNAS 2002)
(Mello & Tu, PNAS, 2003)

Data can only be explained with interaction between Tar and Tsr receptors
Different types of chemo-receptors act together



Responses in wild-type (wt) E. coli cells that 
can adapt accurately
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Monod-Wyman-Changeaux (MWC) model for N highly correlated receptors:

WT cell adapt perfectly:

([L]0=0, 0.1, 0.5, 5mM)

Theory

[L]0-- background ligand signal concentration; Ki,a—dissociation constants

Symbols
Exp.

(Mello&Tu, BioPhys. J. 2007)

Microscopic parameters determined
3 20;  18 ;  3   for MeAspt i aN N K M K mMµ= ≈ ≈ ≈



Adaptation enables high sensitivity over a wide 
range of backgrounds 

Increasing receptor methylation level
(increasing background concentrations [L]0=0, 0.1, 0.5, 5mM)

Exp: Symbols
Theory: Lines

Self-tuned near-critical behavior: the “smart” Ising model

Mechanism for sustained high gain: 

Adapted states



E. Coli surfing the adaptation wave

ln[ ]L

Increasing methylation level

0a

Activity



Kinetics and responses to time 
varying signals



Responses to time varying signals

?

What type of signal processor is bacterial chemotaxis pathway?

Amplifier; filter; nonlinear effects; signal integration/differentiation

Simple step function stimulus is useful to understand the pathway.
But, such simple stimuli is un-physiological. 

Output?

It is the kinetics! &*%$#@

Input



The dynamics of the receptor complex

WA

Ligand binding
(Input)

CheRCheB

(fast time scale)

(slow time scale)

Methylation
(Memory)

Kinase activity
(Output)

(fast time scale)

3CH−



A coarse-grained dynamical model for chemotaxis
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The operation of a measurement device

0a
)(ta

• Measure external object by balancing it with internal weights.
• Operate by feedback: add or subtract weights based on the imbalance.
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Methylation level measure external ligand concentration in log-scale

(“Logarithmic-sensing in E. coli chemotaxis”, Kalinin et al, Bio. J. 2009) 

Turn on stimulus



Log-scale weight is an efficient way of representing a wide 
range of values by a small number of units: e.g., the Chinese 

currency units

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10

Chinese
Currency

The measuring the outside world in log-scale



Some “forgotten” experiments and its recent 
incarnation: response to time varying signals

Experiments done in the 80’s by Howard Berg’s group

•Exponential ramp
•Exponentiated sine wave
•Steps and impulses

The response are now measured 
by using FRET now.

(by T. Shimizu, H. Berg)



Theory prediction: constant activity shift in 
response to exponential ramp

( )dm F a
dt
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Methylation tries to catch up with the exponentially changing external stimulus
But it lag behind it, which leads to the activity shift
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Response to exponential ramps: FRET experiments

Constant activity shift in response to exponentially increasing signal

activity shift

Exponential input ramp



The dependence of the activity shift on ramp rate

The methylation rate function F(a) revealed: soft control at a0 
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Response to sine waves: the spectral analysis
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The phases and amplitudes of the responses
and their dependences on frequency
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Theoretical predictions and experiments

Data

Theory

A low pass filter for the 
derivative of the signal

(Y. Tu, T. Shimizu, H. Berg, PNAS 08)
(T. Shimizu, Y. Tu, H. Berg, submitted 09)



Signal differentiation: Adaptation 
and response to mixed signals



There five different types of chemo-receptors
forming mixed receptor clusters

Total number of Receptors: 15,000-26,000. Tsr:Tar:Trg(Tap,Aer)~2:1:0.1

(5 types of chemoreceptor, each sensing different signals)

Can the cell tell different signals apart? How? and Why?



The local versus global methylation dynamics 

[L]1 [L]2

a1 a2

m1 m2

a

The local adaptation model The global adaptation model

[L]1 [L]2

a1 a2

m1 m2

a

1—Tar/Asp; 2—Tsr/Serine 

Tar Tsr Tar Tsr



The  properties of the adapted (steady) state

The global adaptation model The local adaptation model

Methylation level of both Tar and Tsr 
respond (equally) to either MeAsp
or Serine—always crosstalk.

•Only methylation level of Tar changes in 
response to MeAsp when adaptation is
accurate, no crosstalk.

•Methylation crosstalk occurs only when 
accurate adaptation fails.

Perfect adaptation 
No methyl-crosstalk

Inaccurate adap.
Methyl-crosstalk



The  adaptation kinetics in the local model

+100uM MeAsp

Methylation of the un-hit receptor Tsr
increases initially before going back 
to its original value.

Methylation of the hit receptor Tar 
increases monotonically to its 
final value.



Some experimental evidence
Time series of receptor methylation states after addition of stimuli

+1mM MeAsp

No methylation cross talk by adding MeAsp

(From Sourjik lab)



More experimental evidence
Time series of receptor methylation states after addition of stimuli

+1mM serine

Tsr responds primarily (strongly).
Tar also responds, because the cell does not adapt perfectly to Serine.



Comparison with the local adaptation theory (model)
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The advantage of having a clear memory
Hi G, What did 
you eat last night 
at the banquet?

Hi L, I don’t 
remember exactly, 
just a lot of stuff. 

Hmm, let me check my methylation 
levels: I had fish, meat and 
vegetable. I think I like meat the best, 
I am going for more of that next time!

Local field in 
Ising model
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Heightened sensitivity with local memory

Solid lines --- Local model; Dashed lines – Global model
(3 different background MeAsp concentrations)



Local conformational change of individual receptor 
controls its methylation dynamics

[L]1 [L]2

a1 a2

m1 m2

a

Ising model, where each receptor is assigned a local order parameter, 
is better suited to describe the methylation dynamics for mixed signals, 
than the all-or-none MWC model.

Local conformational change
HAMP domain?

(Khursigara et al, PNAS ’08)

(Hulko et al, 
Cell 06)



Summary



Chemotaxis pathway as a information processor

1) It amplifies the signal in a wide range of background
receptor-receptor interaction in receptor cluster
near perfect adaptation

2)  It senses the concentration in log-scale
Responses depend on

The Weber-Fechner Law in sensory system

Information compression: wide range of concentration, 
limited scale of methylation levels.

[ ] [ ] (ln[ ])L L L∆ = ∆



3) It is a low pass filter for the derivative of the signal

Compute derivative of the input in low frequency regime

10
-1

10
0

10
10

1

10 10 10

Frequency (Arb. unit)

Amplitude Response

A
Divided by

f

f f

( ) /A f f

4) It records information on different ligand by the 
methylation levels of the corresponding receptors

Local memory; Global action



Some remaining challenges



At the molecular level 

(shimitzu et al, 2000)

1)What’s the structure of the cluster? How do they form? 
What affects the formation of the functional complex? What’s the role of
Cell membrane? Role of CheW and CheA?

Ordered?

Disordered?

2) What is the molecular basis for the detailed methylation/demethylation 
dynamics? How is perfect adaptation achieved?

(S. Subramaniam Lab)



•How does the system differentiate different signal?
How the cell distinguish between different signal?
How smart is the bacteria?

Can the system be “rewired” (changing “coupling”) due to learning 
(exposure to some stimulus)

•Why such a large gain? What about noise? 
What about signal gain in response to real stimulus encountered in the wild , 
e.g., as the bacterium (biased) random walking towards a nutrient source.

•Can the same pathway be used to perform other task?

e.g. Thermotaxis---going to a particular temperature

At the systems level



Thank You



From molecular pathway to 
understand behavior (cell motion)



From molecules to behaviors: A E. coli chemotaxis model 
based on intracellular signaling pathway dynamics



The single cell behavior



Comparison with microfluidics experiments
What happen to a cell when it is moving in a spatial profile (gradient, traps, etc.)

Direct comparison with quantitative microfluidics experiments 
(Done with M. Wu lab in Cornell)



Comparison with the classical capillary experiments


