

Quantum optics and quantum information processing with superconducting circuits

Alexandre Blais Université de Sherbrooke, Canada

Sherbrooke's circuit QED theory group

Félix Beaudoin, Adam B. Bolduc, Maxime Boissonneault, Jérôme Bourassa, Samuel Boutin, Andy Ferris, Kevin Lalumière, Clemens Mueller, Matt Woolley *Former members: Marcus da Silva, Gabrielle Denhez*

Équipe de Recherche en Physique de l'Information Quantique

Microwave-photon antibunching without 'clicks'

Alexandre Blais Université de Sherbrooke, Canada

Sherbrooke's circuit QED theory group

Félix Beaudoin, Adam B. Bolduc, Maxime Boissonneault, Jérôme Bourassa, Samuel Boutin, Andy Ferris, Kevin Lalumière, Clemens Mueller, Matt Woolley *Former members: Marcus da Silva, Gabrielle Denhez*

Quantum Device Lab, ETH Zurich

Deniz Bozyigit, C. Lang, L. Steffen, J. M. Fink, M. Baur, R. Bianchetti, P. J. Leek, S. Filipp, Andreas Wallraff

Nature's atoms

• Control internal state by shining laser tuned at the transition frequency

$$H = -\vec{d} \cdot \vec{E}(t)$$
 with $E(t) = E_0 \cos \omega_{01} t$

 Hyperfine levels of ⁹Be₊ have long decay and coherence times

 $T_1 \sim \text{a few years} \quad T_2 \gtrsim 10 \text{ seconds}$

- Reasonably short π -pulse time $T_{\pi} \sim 5 \ \mu {\rm s}$
- Low error per gates: ~ 0.48%

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, Nature 464, 45 (2010)

Artificial atoms: a toolkit

Artificial atoms: potential shaping

Artificial atoms: potential shaping

Artificial atoms: fast and coherent

to trapped ion results

Short pulse: J. M Chow *et al*, Phys. Rev. A **82**, 040305(R) (2010) Long coherence: H. Paik *et al*, arXiv:1105.4652v2 (2011)

Year

From atomic physics to quantum optics

• Control internal state by shining laser at the transition frequency

$$H = -\vec{d} \cdot \vec{E}(t) \quad \text{with} \quad E(t) = E_0 \cos \omega_{01} t$$

 Can the field of a single photon, or even vacuum fluctuations, have a large effect? Cavity QED

Work with large atoms (d)
 Confine the field (E)

Exploring the Quantum: Atoms, Cavities, and Photons, S. Haroche and J.-M. Raimond (2006)

From cavity to *circuit* QED

• Artificial atoms are *large*

From cavity to circuit QED

• E-field can be tightly confined

Blais, Huang, Wallraff, Girvin & Schoelkopf, Phys. Rev. A 69, 062320 (2004)

From cavity to circuit QED

 $_{=\lambda} = 25 \text{ mm}$

'Atom': Transmon qubit of transition frequency ω_a and long coherence time

Cavity': Superconducting coplanar transmission-line resonator of fundamental mode frequency *ω*_r

5 MM

 $g_{\rm circuit}/2\pi \sim [0-1] \,{\rm GHz}$ $g_{\rm cavity}/2\pi \sim 50 \,{\rm kHz}$

Proposal: Blais, Huang, Wallraff, Girvin & Schoelkopf, Phys. Rev. A **69**, 062320 (2004) First realization: Wallraff, Schuster, Blais, Frunzio, Huang, Majer, Kumar, Girvin & Schoelkopf. Nature **431**, 162 (2004) Ultra-strong coupling: Bourassa, Gambetta, Abdumalikov, Astafiev, Nakamura & Blais. Phys. Rev. A **80**, 032109 (2009)

300 µm

Quantum optics with circuit QED

On-demand single microwave-photon source

D. Bozyigit, ..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (2011)

On-demand single microwave-photon source

D. Bozyigit, ..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (2011)

Quantum mechanics of microwave measurements

$$\hat{a}_{\kappa_b} \hat{b}_{g_b} \hat{b}_{amp}$$

Output field: $\hat{b}(t) = \sqrt{\kappa_b} \hat{a}(t) - \hat{b}_{in}(t)$

Amplification:
$$b_{\rm amp}(t) \stackrel{?}{=} g_b b(t) \Rightarrow [b_{\rm amp}(t), b_{\rm amp}^{\dagger}(t)] = g_b^2$$

C. W. Gardiner and M. J. Collett, Phys. Rev. A **31**, 3761 (1985);
C. M. Caves, Phys. Rev. D **26**, 1817 (1982)
B. Yurke and J. S. Denker, Phys. Rev. A **29**, 1419 (1984);
A. Clerk *et al.*, Rev. Mod. Phys. **82**, 1155 (2010)

Quantum mechanics of microwave measurements

Output field: $\hat{b}(t) = \sqrt{\kappa_b}\hat{a}(t) - \hat{b}_{\rm in}(t)$

$$\begin{array}{ll} \text{Amplification:} & b_{\mathrm{amp}}(t) = g_b b(t) + \sqrt{g_b^2 - 1} d_b^{\dagger}(t) \\ & \swarrow \\ & & \swarrow \\ & & \land \\ & \text{Added noise} \\ & \text{with } \langle d_b^{\dagger}(t) d_b(t') \rangle = N_T \delta(t - t') \end{array}$$

C. W. Gardiner and M. J. Collett, Phys. Rev. A **31**, 3761 (1985); C. M. Caves, Phys. Rev. D **26**, 1817 (1982)
B. Yurke and J. S. Denker, Phys. Rev. A **29**, 1419 (1984); A. Clerk *et al.*, Rev. Mod. Phys. **82**, 1155 (2010)

Quantum mechanics of microwave measurements

Output field: $\hat{b}(t) = \sqrt{\kappa_b} \hat{a}(t) - \hat{b}_{in}(t)$

$$\begin{array}{ll} \text{Amplification:} & b_{\mathrm{amp}}(t) = g_b b(t) + \sqrt{g_b^2 - 1} d_b^{\dagger}(t) \\ & \swarrow \\ & & \swarrow \\ & \text{Added noise} \\ & \text{with } \langle d_b^{\dagger}(t) d_b(t') \rangle = N_T \delta(t-t') \end{array}$$

Beam-splitter: added vacuum noise and commuting outputs

C. W. Gardiner and M. J. Collett, Phys. Rev. A **31**, 3761 (1985); C. M. Caves, Phys. Rev. D **26**, 1817 (1982)
B. Yurke and J. S. Denker, Phys. Rev. A **29**, 1419 (1984); A. Clerk *et al.*, Rev. Mod. Phys. **82**, 1155 (2010)

Complex envelope

Complex envelope: $\hat{S}_b(t) = \hat{X}_b(t) + i\hat{P}_b(t)$ = $g_b\hat{b}(t) + \hat{N}_b(t)$ = $g_b\sqrt{\kappa_b}\hat{a}(t) + \hat{N}_b'(t)$

Digitalized using FPGA electronics with a 10 ns time resolution $\ll 1/\kappa$

Beam-splitter: Noise rejection

Complex envelope:
$$\hat{S}_b(t) = \hat{X}_b(t) + i\hat{P}_b(t)$$

= $g_b\hat{b}(t) + \hat{N}_b(t)$
= $g_b\sqrt{\kappa_b}\hat{a}(t) + \hat{N}_b'(t)$

Digitalized using FPGA electronics with a 10 ns time resolution $\ll 1/\kappa$

Beam-splitter: Noise rejection

Complex envelope:
$$\hat{S}_b(t) = \hat{X}_b(t) + i\hat{P}_b(t)$$

= $g_b\hat{b}(t) + \hat{N}_b(t)$
= $g_b\sqrt{\kappa_b}\hat{a}(t) + \hat{N}_b'(t)$

Rejection of uncorrelated noise

Digitalized using FPGA electronics with a 10 ns time resolution $\ll 1/\kappa$

Same-time averages

Same-time averages:

Quadrature $\langle \hat{S}_{e}(t) \rangle \longrightarrow \langle \hat{a}(t) \rangle$ Cross-power $\langle \hat{S}_{e}^{\dagger}(t) \hat{S}_{f}(t) \rangle \longrightarrow \langle \hat{a}^{\dagger}(t) \hat{a}(t) \rangle$

> M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A **82**, 043804 (2010) D. Bozyigit, ..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics **7**, 154 (2011)

Protocol

- 1. Cool to ground state $|\psi_1
 angle = |g
 angle \otimes |0
 angle$
- 2. Prepare arbitrary qubit state $|\psi_2
 angle = (\alpha|g
 angle + \beta|e
 angle)\otimes|0
 angle$

- 3. Transfer state to resonator $|\psi_3\rangle = |g\rangle \otimes (\alpha|0\rangle + \beta|1\rangle)$
- 4. Measure quadratures, extract $S_{\text{e,f}}(t)$ and calculate desired quantity

5. Average results

M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A **82**, 043804 (2010) D. Bozyigit, ..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics **7**, 154 (2011)

Same-time averages

$$\begin{aligned} |\psi\rangle &= (\alpha|0\rangle + \beta|1\rangle) \\ \langle \hat{S}_e(t)\rangle &\propto \langle \hat{a}(t)\rangle = \alpha^*\beta \ e^{-\kappa t/2} \\ &\propto \sin(\theta_r)e^{-\kappa t/2}/2 \end{aligned}$$

See also: A. A. Houck *et al.* Nature **449**, 328 (2007) M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A **82**, 043804 (2010) D. Bozyigit, ..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics **7**, 154 (2011)

Same-time averages

$$\begin{split} |\psi\rangle &= (\alpha|0\rangle + \beta|1\rangle) \\ \langle \hat{S}_{e}^{\dagger}(t)\hat{S}_{f}(t)\rangle \propto \langle \hat{a}^{\dagger}(t)\hat{a}(t)\rangle + P(N_{ef}) \\ &= |\beta|^{2} \ e^{-\kappa t} + P(N_{ef}) \\ &\checkmark \\ \end{split}$$
Can be (mostly) subtracted away with measurements in the ground state

See also: A. A. Houck *et al.* Nature **449**, 328 (2007) M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A **82**, 043804 (2010) D. Bozyigit, ..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics **7**, 154 (2011)

Two-time averages

Two-time correlation functions:

$$\langle \hat{S}_e^{\dagger}(t)\hat{S}_f(t+\tau)\rangle = \frac{\sqrt{g_e g_f}}{2}G^{(1)}(t,t+\tau) + \bar{N}_{ef}\delta(\tau) \qquad G^{(1)}(\tau) = \langle a^{\dagger}(t)a(t+\tau)\rangle$$

$$\langle \hat{S}_{e}^{\dagger}(t)\hat{S}_{e}^{\dagger}(t+\tau)\hat{S}_{f}(t+\tau)\hat{S}_{f}(t)\rangle = \frac{g_{e}g_{f}}{4}G^{(2)}(t,t+\tau) + G^{(2)}_{\text{noise}}(t,t+\tau)$$

$$+\frac{\sqrt{g_e g_f}}{2}\bar{N}_{ef}\left[\delta(\tau)G^{(1)}(t+\tau,t)\delta(0)G^{(1)}(t+\tau,t+\tau)+\delta(0)G^{(1)}(t,t)+\delta(\tau)G^{(1)}(t,t+\tau)\right]$$

M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A **82**, 043804 (2010) D. Bozyigit, ..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics **7**, 154 (2011) See also: Menzel et al., Phys. Rev. Lett. 105, 100401 (2010); Mariantoni et al., Phys. Rev. Lett. 105, 133601 (2010)

Second order cross-correlation:

$$\langle \hat{S}_{e}^{\dagger}(t) \hat{S}_{e}^{\dagger}(t+\tau) \hat{S}_{f}(t+\tau) \hat{S}_{f}(t) \rangle = \frac{g_{e}g_{f}}{4} G^{(2)}(t,t+\tau) + G^{(2)}_{\text{noise}}(t,t+\tau) + \frac{\sqrt{g_{e}g_{f}}}{2} \bar{N}_{ef} \left[\delta(\tau) G^{(1)}(t+\tau,t) \delta(0) G^{(1)}(t+\tau,t+\tau) + \delta(0) G^{(1)}(t,t) + \delta(\tau) G^{(1)}(t,t+\tau) \right]$$

$$G^{(2)}(\tau) = \langle a^{\dagger}(t+\tau)a^{\dagger}(t)a(t+\tau)a(t)\rangle$$

Pulsed single-microwave photon source

- Pulse delay: $t_p = 512 \text{ ns} \gg 1/\kappa, \ 1/T_1$
- Expected results: $G^2(\tau = nt_p) \propto \sin^4(\theta_r/2)$

$$G^2(0) = 0$$

M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A **82**, 043804 (2010) D. Bozyigit, ..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics **7**, 154 (2011)

Two-time correlation functions: $G^{(2)}(\tau)$

M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A **82**, 043804 (2010) D. Bozyigit, ..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics **7**, 154 (2011)

Two-time correlation functions: $G^{(2)}(\tau)$

Summary Antibunching: Quantum Quantum information Correlations characterize nature of microwave processing output field light demonstrated Quantum mechanics on large length scales **On-demand** single photon source Transmon qubits with Superconducting high-Q long coherence times resonator INTR ALFRED P. SLOAN FOUNDATION