### Long Baseline Neutrinos: As Far From A Tabletop Experiment As You Can Get

Niigata-

N37

**Scott Oser** 

**UBC** 

J-PARC

Honshu

Fukushi

Pointer 36° 23'41.59" N 139° 11'54.71" E elev 665 m

N35°

shima

Tsu

Shizuoka

Nagoya

Streaming ||||||||| 100%

Nagano

laehashi

Mito

Nagano

Kofu

Hachioji

Kanagawa

Kawasaki 👝

Yokohama

Tokyo

Tokyo

Japan

E139°

Saitama

# Outline

- Review of Neutrino Mixings & Oscillations
- The T2K Experiment
  - motivation
  - beamline
  - far detector
  - near detector
- Oscillation Results
- Present status and conclusions

Scott Oser (UBC)



Up and down quarks are inside protons and neutrons

Scott Oser (UBC)



Nucleus Electrons **Electrons** orbit atoms, flow through wires, and are responsible for chemistry

Scott Oser (UBC)



Heavier versions of quarks and electrons

This stuff is here because nature likes things to come in threes. I wish I knew why!

Scott Oser (UBC)



Scott Oser (UBC)

## What is a neutrino?

"You are experiencing a profound sense of loss from the removal of your charge and mass. Now, tell me about your mother." A particle with an identity crisis ...

In 1997 I might have told you that a neutrino is what's left after you remove an electron's charge and mass.



# The particle that is barely there

If you have no mass and no charge, what's left? Very little it turns out ...

Neutrinos still have energy and carry momentum.

They carry angular momentum (spin) as well.

WEIRD fact: neutrinos always spin the same direction, which is different from other particles!

#### (spins clockwise when viewed headon)

And they have interactions ...

Scott Oser (UBC)



# Neutrino interactions: extremely weak!



"Charged current": convert a neutrino into an electron, with a W particle carrying charge & momentum away



"Neutral current": the neutrino survives, but some energy and momentum is transferred by a Z particle

9

Neutrinos can pass through 1000's of km of solid matter without stopping!

## Three flavors of neutrinos

Like quarks and electrons, neutrinos come in 3's. The distinction is what kind of charged lepton they couple to:



The result is as if there's something like "electron-ness" or "mu-ness" or "tau-ness" that gets carried by the neutrino.

If for example a particle decays to make a  $\mu$  and a  $\nu_{\mu}$ , then that neutrino later on should only ever be capable of making a  $\mu$ . CONSERVATION OF FLAVOUR.

Scott Oser (UBC)

# Neutrino Mixing

One way this picture could be modified is if flavour eigenstates are not identical to mass eigenstates. What if what we call  $v_{\mu}$  and  $v_{e}$  are really just different combinations of two different states we'll call  $|v_{1}\rangle$  and  $|v_{2}\rangle$ ?

$$|v_{e}\rangle = \cos \theta |v_{1}\rangle + \sin \theta |v_{2}\rangle |v_{\mu}\rangle = -\sin \theta |v_{1}\rangle + \cos \theta |v_{2}\rangle$$

Think of  $|v_1\rangle$  and  $|v_2\rangle$  as the particle states with definite mass, while  $|v_e\rangle$  and  $|v_{\mu}\rangle$  are the states that couple to weak interactions.

Scott Oser (UBC)

# A timely analogy

#### Imagine each neutrino as a pair of clocks



If both clocks read the same time, the neutrino acts like an electron neutrino.



If the red clock is 6 hours ahead, the neutrino acts like an muon neutrino.



If the red clock is 4 hours ahead or four hours behind, then  $\frac{2}{3}$  of the time it acts like a  $v_{\mu}$ , and  $\frac{1}{3}$  of the time like a  $v_{e}$ 

# Neutrinos are created as either $v_e$ or $v_\mu$



Ve Contractions of the second second

At the start, the clocks each read 9:05---in sync, so acts like electron neutrino

After a while, the clocks both read 10:17--still synchronized, still an electron neutrino



At a later time the situation is the same--clocks stay in sync!

# What if the clocks get out of sync?



At the start, the clocks each read 9:05---in sync, so acts like electron neutrino

 $v_{e}/v_{u}$  mix = 2:1

After a while, the red clock is 2 hours ahead: a mix of  $v_e$  and  $v_{\mu}$ 



Later still the clocks are the maximum of 6 hours apart--- this neutrino acts like a  $v_{\mu}$ 

What started out as an electron neutrino can then act like a muon neutrino!

## What makes clocks get out of sync?



What controls the rates of the clocks are the masses and energies of the two mass eigenstates  $|v_1\rangle$  and  $|v_2\rangle$ .

But if masses = 0, everything moves at v=c, and time dilation is infinite.

 $\therefore$  Observable oscillation  $\rightarrow$  non-zero mass.

## Aside: Can the clock run backwards?





OPERA experiment measured transit time of neutrinos from CERN to Gran Sasso. They report that the beam arrived 60ns faster than the speed of light.

Implies that  $(v-c)/c = 2.5 \times 10^{-5}$ 

## Aside: Can the clock run backwards?





T2K plans to upgrade its clocks and check this result within the next few years.

If we confirm the result, we will publish it yesterday.

### Flavour Oscillation

Because a flavour eigenstate produced by a weak interaction is a mix of mass eigenstates which, if  $m_1 \neq m_2$ , propagate with different kinematics, oscillation can occur.



Scott Oser (UBC)



50

0

-1

-0.5

0

cosθ

0.5

PRL 93:101801, 2004





Deficit of upward-going  $v_{\rm u}$  relative to downward-going.

No deficit for  $v_{a}$ .

PRD 71:112005, 2005 Seems like  $v_{..} \rightarrow v_{..}$ 

0.5

Scott Oser (UBC)

300

200

100

0

150

100

50

0

-1

-0.5

-0.5

0

cosθ

Number of Events



#### Scott Oser (UBC)

## SNO & KamLAND

- Appearance of non- $v_e$  in solar <sup>8</sup>B flux
- $\bullet$  Suppression and spectral distortion of reactor  $\nu$
- Consistent set of mixing parameters



# The T2K Experiment







Sophisticated on-axis and off-axis near detectors 280m from nage NASA Image © 2007 Europa Technologies Image © 2007 TerraMetrics 41 © 2007 ZENRIN proton target

E133

Kyoto

Nagoya

Gifu

 $\times$ 

X

XXXX

Kanagav

Kawasal

Yokol

ZN

Gifu

E135°

E137°

Nagano

ECAL

oid Coil

P0D ECAL

Barrel ECAL

Japan

E139°

ama

Kanazawa Kanazawa

Super-K

Nagano

Naebashi

Sado

Honshu

Fukushima

Niigata

N37°

J-PARC

Niigata

Awa-shima

TM

Streaming |||||||| 100%





# K2K & MINOS



## The full v 3x3 mixing matrix

Different L/E values pick up different  $\Delta m^2$  pairs, probing different parts of mixing matrix.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & e^{i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{-i\delta}s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
  
Atmospheric  $\nu$ 's: Short baseline reactor  $\nu$ 's: Solar  $\nu$ 's:  $\theta_{23} \approx \pi/4$   $\theta_{13} < \pi/20$   $\theta_{12} \approx \pi/6$   
Maximal mixing! (?) Small, quark-like mixing Large, non-maximal mixing

Compare to identical parameterization of CKM matrix ...

$$\theta_{23} \approx \pi/76$$
  $\theta_{13} \approx \pi/870$   $\theta_{12} \approx \pi/14$ 

Scott Oser (UBC)

# $\boldsymbol{\theta}_{13}$ and $\boldsymbol{\nu}_{e}$ Appearance

The observed oscillations of atmospheric and long-baseline v's seem to be  $v_{\mu} \rightarrow v_{\tau}$ . What about  $v_{\mu} \rightarrow v_{e}$ ?

For oscillations involving  $v_2$  and  $v_3$  (atmospheric, long baseline), the limiting factor for  $v_{\mu} \rightarrow v_e$  is how much  $v_3$  couples to electrons in CC weak interactions. To first order, in the absence of matter effects, at oscillation maximum this probability is:

$$P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}) = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23}$$
$$\approx \frac{1}{2} \sin^{2} 2\theta_{13}$$

## This is the main goal of T2K.

Scott Oser (UBC)

## CP Violation and $v_e$ Appearance

CP symmetry requires  $P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}) = P(\overline{\mathbf{v}}_{\mu} \rightarrow \overline{\mathbf{v}}_{e})$ 

For  $v_e$  appearance at  $\Delta m_{32}^2$ :

$$A_{CP} = \frac{P(\mathbf{v}_{\mu} \to \mathbf{v}_{e}) - P(\bar{\mathbf{v}}_{\mu} \to \bar{\mathbf{v}}_{e})}{P(\mathbf{v}_{\mu} \to \mathbf{v}_{e}) + P(\bar{\mathbf{v}}_{\mu} \to \bar{\mathbf{v}}_{e})} \simeq \frac{\Delta m_{12}^{2} L}{4 E_{\nu}} \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \sin \delta_{CP}$$

This may be a big asymmetry!

#### SO WHAT?

Our universe is made of matter but not anti-matter. CP violation is a requirement for producing a cosmological asymmetry. Regular quark CP violation not enough----is this the missing piece?

Scott Oser (UBC)

# T2K $v_e$ Appearance

- Measure  $v_{\mu} \rightarrow v_{e}$  appearance: will give  $\theta_{13}$ .
- Based on observation of CCQE interactions at Super-K:

 $\nu_e + n \rightarrow e + p$ 

• Flux of  $v_e$  will be much smaller than  $v_{\mu}$ . Understanding and controlling all possible backgrounds is important T2K challenge.



(5 years at full 750kW power)

Factor of ~20 improvement in sensitivity over CHOOZ.

# T2K $\nu_{_{\mu}}$ Disappearance

- Measure  $\nu_{\mu}$  disappearance: will give  $\Delta m_{32}^2$  and  $\theta_{23}$ .
- Comparison of near/far spectra allows for extraction of  $\nu_{\mu}$  disappearance parameters.
- Use kinematically clean Charged-Current Quasi Elastic (CCQE) interaction to measure  $\nu_{\mu}$  flux and spectrum:

 $\nu_{\mu} + n \rightarrow \mu + p$ 

• High JPARC proton flux will allow for precise measurement.



Scott Oser (UBC)



Scott Oser (UBC)

# J-PARC



### 30 GeV proton beam in Tokai, Japan

Scott Oser (UBC)

# How To Make A Neutrino Beam

![](_page_33_Figure_1.jpeg)

30 GeV protons hit graphite target

3 magnetic horns focus  $\pi^+$ , defocus  $\pi^-$ .

 $\mu$  monitor at far end of beam dump: fluence: 10<sup>8</sup>  $\mu$ /cm<sup>2</sup>/spill at full power

![](_page_33_Picture_6.jpeg)

T2K's 90cm graphite target

# **Optical Transition Radiation Monitor** (OTR):Toronto/York

- OTR detector is directly upstream of T2K target.
- Measures the proton beam width and position just before impact.
  - Cannot place conventional beam monitors in this position; wouldn't

(mm) ~ 10

5

0

-5

-10

-15 -15

-10

![](_page_34_Picture_4.jpeg)

![](_page_34_Figure_5.jpeg)

![](_page_35_Picture_0.jpeg)

![](_page_35_Picture_1.jpeg)

#### ↑ Inside the decay volume

← The 2<sup>nd</sup> focusing horn
### **Off-Axis Beam Principle**



Off-axis beam: more flux near peak oscillation energy, less flux at higher energies where  $v_e$  backgrounds are produced.

Scott Oser (UBC)



# Super-Kamiokande



Large water Cherenkov detector

22.5ktonne water fiducial mass

~11,000 phototubes

Scott Oser (UBC)

# Super-Kamiokande Event Selection

- Super-K will measure  $CCQE v_{\mu} \text{ or } v_{e} \text{ events}$ for key T2K \_\_\_\_\_ measurements.
- Some challenges:





electron-like (v.)

- Understanding the muon-like (v<sub>µ</sub>) irreducible background from beam

# Backgrounds to $v_{a}$ Appearance

Intrinsic beam  $v_{a}$ :

- reduce with E cut
- measure at ND

 $\pi^0$  production, with one  $\gamma$ from event not detected at Super-K:

- better ID algorithms
- measure at ND
- measure  $\pi^0$  in SK

 $v + p \rightarrow v + p + \pi^0$ 





 $\pi^0$  production: 10 events

Estimated bkgd (5 years):

17 events

signal:

20 events for  $\sin^2 2\theta_{13} = 0.01$ 

Scott Oser (UBC)

intrinsic  $v_{a}$ :

#### Off Axis Near Detector



### Near Detectors





↑ Fine-grained scintillator detector (long thin bars---active target mass)

← Large Time Projection Chamber (3D gas tracker)

Scott Oser (UBC)

# Sample ND280 Measurements

 Charged-Current Quasi-Elastic:

```
\nu_{_{\mu}} + n \rightarrow \mu \ + \ p
```

 Super-K oscillation analysis uses this interaction mode; accurate/precise measurement before oscillation is essential.



- Neutral-Current  $\pi^0$ :  $\nu_{\mu} + N \rightarrow \nu_{\mu} + N + \pi^0$
- Interaction mode is an important background to Super-K  $\nu_{e}$  appearance.
- P0D has large target mass and lead radiators; P0D + ECAL optimized for measurement of gammas from  $\pi^0$ .

Both POD and FGD have water targets; allows for cleaner extrapolation to water-based Super-K.

Scott Oser (UBC)

# **Oscillation Analysis**

- 1. Predict number of neutrinos produced in beam
- 2. Verify & normalize prediction using near detector
- 3. Extrapolate to Super-K
- 4. Compare number of events seen at Super-K to number predicted

First results on  $v_e$  appearance released in June:

- 1.43 x  $10^{20}$  protons on target
- included all T2K data to date
- PRL 107, 041801, 2011

August: new results on  $v_{\mu}$  disappearance

- paper in preparation

# T2K: Flux prediction (Beam MC)



E<sub>v</sub> (GeV)

Simulate hadron production on target using FLUKA simulation

Particle production cross sections tuned to external data from NA61 and others.

 $E_{\nu}$  (GeV)

# $R_{DATA/MC}$ :ND280: OFF axis detector



Inclusive CC  $v_{\mu}$  analysis:

Select long negatively curving tracks in the ND280 tracker. These are candidate muons

Require that they have deposited ionization energy per path length consistent with being muons.

Estimate few percent background from other processes <sup>46</sup>

# ND280: Normalization DATA/MC



#### # of CC inclusive $\mu$ events:

 $R_{DATA/MC} = 1.036 \pm 0.028 \text{ (stat)}^{+0.044}_{-0.037} \text{ (det. syst)} \pm 0.038 \text{ (phys. model)}$ 

$$N_{\rm SK}^{\rm expected} = \left(N_{\rm ND}^{\rm DATA} / N_{\rm ND}^{\rm MC}\right) \times \left(N_{\rm SK}^{\rm MC} + N_{\rm bkg}^{\rm MC}\right)$$

Total uncertainty for  $N_{\rm SK}/N_{\rm ND}$ :  $\pm 2.7\% \oplus \frac{+5.6}{-5.2}$  % for background

#### **Event Selection**

Look for events with:

- A single electron-like ring
- No following decay electron
- Energy in expected range: 100 < Ev < 1250 MeV
- No evidence for  $2^{nd}$  ring with that could reconstruct to give  $\pi^0$  mass



Signal Efficiency = 66% Background Rejection: 77% for beam ve 99% for NC

#### 6 candidate events seen

# Backgrounds

Three significant sources of background:

- 1.  $v_{e}$  in beam 0.8
- 2. mis-reconstructed  $\pi^0$  0.6
- 3.  $v_{\mu}$ - $v_{e}$  from subdominant  $\theta_{12}$  effect 0.1 **TOTAL:** 1.5±0.3

If only known backgrounds produce  $v_e$  in Super-K, the probability of seeing 6 or more candidate events is 0.7%.

Significance of excess:  $2.5\sigma$ 

### Vertex distribution

#### Vertex distribution of ve candidate events



- → Perform several checks. for example
  - \* Check distribution of events outside FV → no indication of BG contamination
  - \* Check distribution of OD events → no indication of BG contamination
  - \* K.S. test on the R<sup>2</sup> distribution yields a p-value of 0.03

# $\theta_{13}$ measurements



# Muon neutrino disappearance

If neutrinos didn't oscillate, expect to see  $103.7 \pm 13.5$  events at Super-K

Actual number seen: 31



# Muon Neutrino Disappearance



Oscillation contours already competitive with only 2% of T2K's final data set!

#### March 11 Earthquake

Massive earthquake affected J-PARC directly.

- Tsunami did not reach lab!
- Most buildings sustained little damage
- Beam shut down automatically and normally
- T2K near detectors continued to read out data on battery backup



Overall, minimal damage. Most work needed on realigning beam and reconnecting services severed by shifting ground.

Plan to restart accelerator in December.

Scott Oser (UBC)



#### Ultimate Sensitivity

Ultimately we aim for 750kW x 5x10<sup>7</sup> s, which should push down to  $sin^2 2\theta_{13} = .006 (90\% CL)$ 

This would be 5 years of running at full power.

Intermediate target (2013?) is  $\sin^2 2\theta_{13} = 0.013$ 

Beam power is very difficult to forecast at this stage ...

## **Conclusions and Outlook**

- T2K has the seen first indication of  $\nu_{_{\mu}} \rightarrow \nu_{_{\rm e}}$  oscillations in long baseline beam
  - 2.5 $\sigma$ : Not yet statistically compelling, but exciting!
  - More data coming soon
- Muon neutrino disappearance compatible with previous measurements, already becoming competitive even with low statistics.
- The search for  $\theta_{13}$  is on!

### Backup slides

Scott Oser (UBC)

# **Oscillation Analysis**



First results on  $v_{e}$  appearance released in June:

- 1.43 x 10<sup>20</sup> protons on target
- included all T2K data to date
- PRL 107, 041801, 2011

August: new results on  $v_{\mu}$  disappearance

- paper in preparation

#### Outline of analysis $v_e$ appearance search

- 1. Calculate expected # of event as a function of oscillation parameters:  $\theta_{I3}$ ,  $\Delta m_{I3}^2$ 
  - »  $N_{\rm SK}^{\rm MC} = \int dE \, \Phi_{\rm SK}(E) \times \sigma_{\rm SK}(E) \times \varepsilon_{\rm SK}(E) \times P(\nu_{\mu} \rightarrow \nu_{\varepsilon}; E; \theta_{13}, \Delta m_{13}^2)$ 
    - $N_{\rm bkg}^{\rm MC}$  also should be estimated.
  - ND280 →  $R_{DATA/MC} \equiv N_{ND}^{DATA}/N_{ND}^{MC}$

 $\rightarrow N_{\rm SK}^{\rm expected} = R_{DATA/MC} \times (N_{\rm SK}^{\rm MC} + N_{\rm bkg}^{\rm MC})$ 

- 2. Select events  $v_e$  candidate from data.
  - Select the "good beam spill"
  - T2K event selection
    - Select Fully Contained events in Fiducial Volume
    - Ring counting → Select CC-QE candidate
    - PID : separate  $v_e$  from  $v_u$  events
    - Background rejection cut  $\rightarrow N_{\rm SK}^{\rm obs}$
  - 3. Estimate the oscillation parameter from  $N_{\rm SK}^{\rm expected}$  and  $N_{\rm SK}^{\rm obs}$ .

#### Analogy of Neutrino and Quark Mixings



W couplings mix quark generations through a rotation between weak and strong flavour eigenstates.

$$\begin{vmatrix} d' \\ s' \\ b' \end{vmatrix} = \begin{vmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{vmatrix} \begin{vmatrix} d \\ s \\ b \end{vmatrix}$$

For neutrinos the rotation is between the weak flavour eigenstates and the mass eigenstates.

$$\begin{vmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{vmatrix} = \begin{vmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{vmatrix} \begin{vmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{vmatrix}$$

Scott Oser (UBC)

# Dependence on $\delta_{CP}$

The electron appearance probability depends on the matter effect & CP-violating phase in addition to  $\theta_{13}$ .

The community will need data from DoubleCHOOZ, Daya Bay, NOvA, or LBNE (FNAL $\rightarrow$ DUSEL) to disentangle.



Scott Oser (UBC)

### Event selection



### **Event Selection**

Invariant mass of already found 1 e-like ring + additional forced-reconstructed e-like ring Minv < 105MeV/c2

• Reject remaining  $\pi 0$  background

#### 6 events remained

Reconstructed neutrino energy < 1250 MeV

- Reject higher energy intrinsic beam background from kaon decays

#### 6 final candidate events remained!

Signal Efficiency = 66% Background Rejection: 77% for beam ve 99% for NC

Selection criteria & cut values are fixed before analysis. Unbiased



#### Beam prediction w/ CERN/NA61 results



#### Cancellation in ratio prediction thanks to near&far correlation

$$\delta \left( \begin{array}{c} N_{ND}^{MC} \\ N_{SK}^{MC} \end{array} \right) = 8.5\%$$

# Event selection (1) timing



Clear bunch timing structure of J-PARC!!

 121 Fully Contained(FC) events detected (FC: hits in ID only, no OD hits)



## Systematic error

| Error source                                                      | $\sin^2 2\theta_{13} = 0$ | $\sin^2 2\theta_{13} = 0.1$ | Further improvements are  |  |  |  |  |
|-------------------------------------------------------------------|---------------------------|-----------------------------|---------------------------|--|--|--|--|
| (1) Beam flux                                                     | $\pm 8.5\%$               | $\pm 8.5\%$                 | planned. Eg. Inclusion of |  |  |  |  |
| (2) $\nu$ int. cross section                                      | $\pm 14.0\%$              | $\pm 10.5\%$                | NA61 Kaon results, etc    |  |  |  |  |
| (3) Near detector                                                 | $^{+5.6}_{-5.2}\%$        | $^{+5.6}_{-5.2}\%$          |                           |  |  |  |  |
| (4) Far detector                                                  | $\pm 14.7\%$              | $\pm 9.4\%$                 |                           |  |  |  |  |
| (5) Near det. statistics                                          | $\pm 2.7\%$               | $\pm 2.7\%$                 |                           |  |  |  |  |
| Total                                                             | $\binom{+22.8}{-22.7}\%$  | $\binom{+17.6}{-17.5}\%$    |                           |  |  |  |  |
|                                                                   |                           | Smaller error for l         | arger S/N                 |  |  |  |  |
| $N^{exp}_{SK tot.} = 1.5 \pm 0.3$ events                          |                           |                             |                           |  |  |  |  |
| for $\sin^2 2\theta_{13} = 0$ (w/ 1.43 x 10 <sup>20</sup> p.o.t.) |                           |                             |                           |  |  |  |  |

#### Number of events summary

|                                       | Total   | Beam<br>ve | NC  | vµ <b>≭</b> ve<br>(sol term) |
|---------------------------------------|---------|------------|-----|------------------------------|
| Expected $BG \sin^2 2\theta_{13} = 0$ | 1.5±0.3 | 0.8        | 0.6 | 0.1                          |
| Observed                              | 6       |            |     |                              |

Probability to observe six or more events if  $\theta 13=0$ : **0.007** (2.5  $\sigma$  significance)

#### A candidate



Times (ns)

|    | $\mathbf{D}_{\mathbf{wall}}$ | Ring-counting | PID       | $\mathbf{E_{vis}}$ | POLfit mass      | $\mathrm{E}_{ u}^{\mathrm{rec}}$ |
|----|------------------------------|---------------|-----------|--------------------|------------------|----------------------------------|
|    | (cm)                         | likelihood    | parameter | (MeV)              | $({ m MeV}/c^2)$ | (MeV)                            |
| #1 | 614.4                        | -5.7          | -1.2      | 381.8              | 29.9             | 485.9                            |
| #2 | 284.2                        | -5.2          | -1.2      | 583.1              | 100.4            | 842.5                            |
| #3 | 338.5                        | -6.0          | -1.6      | 512.0              | 5.1              | 722.9                            |
| #4 | 244.2                        | -100          | -2.3      | 1049.0             | 0.04             | 1120.9                           |
| #5 | 239.4                        | -3.9          | -3.1      | 263.6              | 68.9             | 580.3                            |
| #6 | 378.4                        | -6.1          | -2.6      | 363.3              | 3.4              | 419.8                            |

Table 6: Reconstructed information for the final  $\nu_e$  candidate events.

68

# JPARC Power Ramp-Up

- Plots shows RCS power.
- Main ring power is factor of 1.3-3 lower than RCS power (factor of 3 now, factor of 1.3 later).



S. Nagamiya @ICFA seminar

Colloquium at Toronto October 20, 2011 69

Scott Oser (UBC)

### **Beam Pointing Check**

An on-axis array of iron/scintillator neutrino detectors measures the beam profile and direction 280m from the production point.

Horizontal:  $+0.01\pm0.05(\text{stat})\pm0.33(\text{sys})$  mrad Vertical :  $-0.24\pm0.05(\text{stat})\pm0.37(\text{sys})$  mrad



# NOvA



71

## Mass Hierarchy



Scott Oser (UBC)
### Matter Effects and $v_e$ Appearance

Matter effects modify the oscillation formula. Because the Earth is made of electrons and not heavier leptons, the effective "index of refraction" for  $v_e$  is different than that for  $v_{\mu}$ . At the oscillation maximum, the  $v_e$  appearance probability changes to:

$$P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}) \approx \left(1 + 2\frac{E}{E_{R}}\right) P_{vac}(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e})$$
  
where  
$$E_{R} = \frac{\Delta m_{32}^{2}}{2\sqrt{2}G_{F}N_{e}} = \pm 11 GeV$$

The sign of the matter effect is opposite for neutrinos and antineutrinos, and depends on the sign of  $\Delta m^2$  as well.

### $\theta_{13}$ : MINOS & solar limits



MINOS  $\nu_{\mu} \rightarrow \nu_{e}$ : saw 35 events, expected background 27 ± 5 ± 2

$$\sin^2 2\theta_{13} = 0.078^{+0.079}_{-0.064}$$

Solar + KamLAND joint fit: Scott Oser (UBC)

### Leptogenesis

CP violation in quark sector not enough to explain observed matter-antimatter asymmetry in universe.

Neutrino mixing provides another possible source of CPV.

• Standard Leptogenesis: decays of RH neutrinos (CPV in decay)

Quantum interference of tree diagram and one-loop diagram



Usual scenario: decay of heavy Majorana neutrinos Phys.Lett B 174, 45 (1986)

Many alternates, eg. leptogenesis with only Dirac v's PRL 89:271601 (2002)

Relation of  $\delta_{_{CP}}$  to leptogenesis is model-dependent, but observation of

### **Atmospheric Neutrinos**



Scott Oser (UBC)

### Neutrino Beamline

• T2K group responsible for construction of neutrino beamline at JPARC; huge amount of work.



Scott Oser (UBC)

# The T2K Collaboration

#### • ~400 people, (290 PhD physicists)

- Japan (85)
  - ICRR, Hiroshima U, KEK, Kobe U, Kyoto U, Miyagi U of Education, Osaka City U, U of Tokyo
- UK (83)
  - Oxford, Imperial College London, Lancaster U, Queen Mary U of London, Sheffield U, STFC/RAL/Daresbury Lab, U of Liverpool, U of Warwick

#### • U.S.A. (66)

 Boston U, Brookhaven Lab, Colorado State U, Duke U, Louisiana State U, Stony Brook U, UC Irvine, U of Colorado, U of Pittsburgh, U of Rochester, U of Washington

#### • Canada (65)

 U of British Columbia, U of Regina, TRIUMF, U of Toronto, U of Victoria, York U

#### • France (51)

 CEA/DAPNIA Saclay, IPN Lyon, LLR Ecole Polytechnique, LPNHE-Paris

#### Switzerland (38)

Bern, ETHZ, U of Geneva

- Poland(29)
  - IFJ PAN Cracow, IPJ Warsaw, Technical University Warsaw, U of Silesia, Warsaw U, Wroclaw U
- Russia (13)
  - INR
- Spain(II)
  IFIC Valencia, Barcelona/IFAE
- Italy (10)
  - INFN-Bari, INFN-Rome, Napoli, Padova, Rome
- Korea (9)
  - Chonnam National U, Dongshin U, Sejong U, Seoul National U, Sungkyunkwan U
- Germany(3)
  RWTH Aachen U

Antarclica

# Monitoring the Beam Location

Optical Transition Radiation foil monitor just upstream of target







# Nuclear Effects



Data from K2K Scibar detector shows poor agreement in q<sup>2</sup> distribution for events selected as being not CCQE The neutrino world's version of a QCD background ... are there ain't no such thing as asymptotic freedom at these energies!

Nuclear effects quite important in modelling neutrino interactions: binding energy, Fermi motion, Pauli blocking, coherent scattering off of entire nucleus ...

Data anomalies abound!

May be different for different nuclei.

### **CP** Violation and Matter Effects



Significant parameter degeneracies will require multiple experiments to disentangle.

Scott Oser (UBC)

# $\nu_{\mu}$ disappearance analysis



# of events agree with MINOS / SK measurements.

### flux at SK (10d tuned flux)



# Flux predictions by flavor

ND280

SK





### Far/Near ratio



## **Beam direction: INGRID**

