Please note: Feel free to use these slides but please acknowledge their source

On Rabbits, Foxes, Clouds and Rain

Graham Feingold

NOAA Earth System Research Laboratory, Boulder, Colorado

Acknowledgements: Ilan Koren, Weizmann Institute, Israel

University of Toronto, Physics Department March 1, 2012

The Climate System Atmosphere Vegetation Ocean Land-Ice Surface

A tightly coupled system with a number of important components

The Climate System

Role of Clouds in Changing Planetary Albedo

Aerosol Enhances Cloud Brightness

Ship track Images, Aqua, MODIS

Aerosol: A suspension of particles in a medium (air)

A Very Short Course in Cloud Physics

Drops form on tiny suspended particles

Larger drops form on larger aerosol particles Drops grow by vapour diffusion

More aerosol \rightarrow more, smaller drops (all else equal)

Cloud Drops: μ m to mm in size

Aerosol particles (sulfate, sea salt, etc.): < 1 μ m in size

Drop Coalescence generates Rain

Collect<u>or</u> drop (larger fall velocity V_x)

Collect<u>ed</u> droplets (small fall velocity V_{y})

Coalescence efficiency is a strong function of drop size

Aerosol particles affect Precipitation

Few particles/large drops *Precipitation* More particles/small drops No precipitation

Aerosol particles enhance cloud brightness

Less reflective clouds (large drops)

Reflective clouds (small drops)

Robert Simmon

The Climate System

RADIATIVE FORCING COMPONENTS

Role of Aerosol & Clouds in Changing Planetary Albedo

The Scale Problem

Aerosol-Cloud-Precipitation interactions and feedbacks must be represented at a range of spatiotemporal scales:

 μ m to 1000s km seconds to days

The number of degrees of freedom of the system is staggering!

A System Characterized by Complexity

- Dynamics
- Microphysics
- Radiation
- Aerosol

A host of feedbacks between the components

Patterns: Mesoscale Cellular Convection in Stratocumulus

Open cellular convection

500 km

- Patterns and emergence in atmospheric systems

Closed cellular convection

Other examples

Flock behaviour

Numerical simulation of "Rayleigh-Bénard Convection⁴

Computer simulation of BZ reaction

Oscillatory behaviour in Belousov-Zhabotinskii chemical reactions

"Emergence"

System-wide patterns emerge from local interactions between elements that make up the system

Implication: Complex problems with huge number of degrees of freedom may be amenable to solution with much more simple set of equations

Rayleigh-Bénard Convection

T (cold)

 $R_a = \alpha g \Delta T h^3 / (\nu \chi)$

Transition from conduction to convection occurs when the Rayleigh number exceeds a critical value R_c

Rayleigh-Bénard Convection

Controlled lab experiments with different scales: Patterns and preferred modes

Getling and Brausch, Phys. Rev. E 2003

Aerosol/drizzle selects the state

System Equilibria

Atmospheric systems prefer certain modes

Non-drizzling, closed-cell mode

Drizzling, open-cell mode

Rearrangement of Open Cells

Y-shaped surface convergence zone is region favoured for new convection Precipitation is initiated Downdrafts, opening of cell Surface divergence

Rearrangement of Open Cells

Blue: Downdrafts/precipitation

Y-shaped surface convergence zone is region favoured for new convection ↓ Precipitation is initiated ↓ Downdrafts, opening of cell ↓ Surface divergence

Surface Convergence Patterns

Shifting of the Patterns

2-D code courtesy <u>www.LBMethod.org</u> (Lattice-Boltzmann Method)

2-D code courtesy <u>www.LBMethod.org</u> (Lattice-Boltzmann Method)

2-D code courtesy <u>www.LBMethod.org</u> (Lattice-Boltzmann Method)

3 LES cases: DYCOMS ATEX VOCALS

3 LES cases: DYCOMS ATEX VOCALS

Feingold, Koren, Wang, Xue, Brewer (2010)

Are Oscillating Patterns Common?

Large Eddy Simulation of Aerosol-Cloud-Precipitation

Large Eddy Simulation: Solution to Navier-Stokes Eqns on 3-D grid (~ 200 x 200 x 200)

Anticlockwise loops in *R*; Cloud phase space

Koren and Feingold 2011, PNAS

Predator-Prey Model

Lotka-Volterra Equations (circa 1926)

$$\frac{dx}{dt} = x(\alpha - \beta y)$$

$$\frac{dy}{dt} = -y(\gamma - \delta x)$$

$$x = prey$$

$$y = predator$$

Image courtesy of Wikipedia

4 parameters: $\alpha, \beta, \gamma, \delta$

Predator-Prey Model

Clouds=Rabbits; Rain=Foxes

- Cloud builds up
- Rain follows some time behind
- Rain destroys cloud
- Cloud regenerates (meteorological forcing, colliding outflows, etc)

and so on ...

Rain preys on clouds

Koren and Feingold 2011, PNAS

Vertical Profile of Radar reflectivity (a proxy for Rainrate) from N. Atlantic (Porto Santo, 1992; ASTEX)

Balance Equations: average system state

Cloud Depth H

$$\frac{dH}{dt} = \frac{H_0 - H}{\tau_1} + \dot{H}_r(t - T)$$

Loss term due to rain

Rainrate R

 $R = \alpha H^3 N_d^{-1}$

Empirically and theoretically based

$$R(t) = \frac{\alpha H^3(t-T)}{N_d(t-T)}$$

Delay function (time for rain to develop)

Drop concentration N_d

$$\frac{dN_d}{dt} = \frac{N_0 - N_d}{\tau_2} + \dot{N}_d(t - T)$$

Loss term due to rain

Notes:

Source terms represent a range of forcings that result in exponential rise to H_0 or N_0 within a few τ

 N_d (or aerosol) modulates H-R interaction

Loss terms

Cloud Depth H loss term

$$\dot{H}_r = \frac{dH}{dt} = \frac{dH}{d\text{LWP}} \frac{d\text{LWP}}{dt}$$
; $\frac{d\text{LWP}}{dt} = -R$

$$\dot{H}_r = -\frac{1}{c_1 H}R = -\frac{\alpha H^2}{c_1 N_d}$$

Drop concentration N_d loss term (collision-coalescence)

$$\dot{N}_d = -c_2 N_d R$$
 Wood 2006

Balance Equations

Cloud Depth H

$$\frac{dH}{dt} = \frac{H_0 - H}{\tau_1} + \dot{H}_r(t - T)$$

Rainrate R

$$R(t) = \frac{\alpha H^3(t-T)}{N_d(t-T)}$$

Drop concentration N_d

$$\frac{dN_d}{dt} = \frac{N_0 - N_d}{\tau_2} + \dot{N}_d(t - T)$$

Notes:

Five parameters:

Carrying Capacity: H_0 , N_0

Time constants: τ_1, τ_2

Delay time: T

Oscillating Solutions: Steady State

Koren and Feingold 2011, PNAS

Steady State Solution to Cloud Depth H

 $\frac{dH}{dt} = \frac{H_0 - H}{\tau_1} + \dot{H}_r(t - T) = 0 \qquad \qquad H = \frac{(N_d^2 + 4\gamma\tau_1 N_d H_0)^{\frac{1}{2}} - N_d}{2\gamma\tau_1}$

Oscillating Solutions: No Steady State

7 day simulation

Koren and Feingold 2011, PNAS

Stability

How stable are the stable states? How readily does the system transition from one state to another?

States A and B are stable and self-sustaining

Small perturbations strengthen the resilience of the state

Koren and Feingold 2011, PNAS

Rosenzweig Paradox (1971): the more "food" (larger H_0) you give a predator-prey system, the more unstable it will be

The Way Forward?

1) <u>Process level</u> understanding *"Reductionist"* or *"Newtonian"*

Synthesis of "Newtonian" and "Darwinian" *

* John Harte, Physics Today October 2002

Summary

- Emergence: coherent patterns emerge from local interactions
 - Open/Closed cells
 - Flock behaviour
 - Oscillating chemical reactions
- Can we exploit emergence to represent complex systems?
- Open cellular state: Coupled system that constantly rearranges itself
 - Local interactions: convergence of precipitating outflows
 - <u>synchronized</u> rain, oscillations in open-cell state
- Aerosol-cloud-precipitation system contains elements of the predator-prey problem
 - Coupled oscillations in Cloud-Rain "Populations"
 - Bifurcation

References

- Feingold, Koren, Wang, Xue, Brewer, 2010: Precipitation generated oscillations in open-cellular cloud fields, *Nature August 2010*
- Koren and Feingold, 2011: Aerosol-cloud-precipitation system as a predator-prey problem, *PNAS*, *July 2011*.