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Chiral symmetry and parity invariance

Chern-Simons theory

Chiral magnetic effect and local P and CP violation                    
in hot quark-gluon matter at RHIC and LHC

Chiral hydrodynamics: how quantum anomalies affect 
the macroscopic collective behavior at femto-, nano-,

     and parsec scales

Outline



What is chiral symmetry?



Chiral symmetry: the definition

Lord Kelvin (1893):
“I call any geometrical figure, or groups of 
points, chiral, and say it has chirality, if its 
image in a plane mirror, ideally realized, 
cannot be brought to coincide with itself.”

Greek word: χειρ (cheir) - hand



Examples

Not chiral:
nails, spin-0 bosons, …

Chiral:
screws, spin-1/2 fermions,…

<<nail>> <<screw>>



Polarized life

Louis Pasteur
   1822-1895

Rotation of light polarization in
tartaric acid - absent in synthesized one,
but present in the one derived from
wine lees          different mixtures of
                         left and right crystals  



Truth at the bottom of the glass:

wine lees  Sediment or deposit that forms in the bottom of 
wine casks during the fermentation process; used as a source 
of tartaric acid and tartrates. 



!x→ −!x

Parity invariance:
left vs right

In 3+1 dimensions, Parity transformation is

Parity-even:

mass
energy
angular momentum
magnetic field
Maxwell field strength tensor

Parity-odd:

particle position
momentum
electric current
electric field
electromagnetic vector potential

NB: different in the even 
number of spatial dimensions!



Parity in gauge theories:
Classical electrodynamics
and Maxwell’s equations

Faraday-
Maxwell
induction 

James C. Maxwell, 1831-1879

Michael Faraday, 1791-1867

Maxwell electrodynamics is P and CP even

EM fields in the aether:



P and CP invariances are violated
by weak interactions

T.D.Lee
C.N.Yang

CP violation J.W.Cronin, V.L.Fitch
                    1980 
Complex CKM mass matrix
Y. Nambu, M. Kobayashi, T. Maskawa
                    2008 

1957 

What about
strong interactions?



Very strict experimental limits exist on 
the amount of global violation of P and 
CP invariances in strong interactions 
(mostly from electric dipole moments)

But: P and CP conservation in QCD is 
by no means a trivial issue... 

Can a local P and CP violation occur in
QCD matter? 



Mathematics: in search for “the most 
harmonious and the most beautiful” 

from a letter by Maxwell
to Galton

“I always regarded mathematics as
the method of obtaining the best 
shapes and dimensions of things; 
and this meant not only the most 
useful and economical, but chiefly
the most harmonious and the most
beautiful.”



Gauge fields and topology

Gauge theories “live” in a fiber bundle space that 
possesses non-trivial topology (knots, links, twists,...) 

Möbius strip, the simplest nontrivial example of a fiber bundle

NB: Maxwell
electrodynamics
as a curvature
of a line bundle



Annals of 
Mathematics, 
1974



Chern-Simons forms

What does it mean for a gauge theory? 



Chern-Simons theory

What does it mean for a gauge theory? 

Riemannian connection

Curvature tensor Field strength tensor

Gauge field
PhysicsGeometry

SCS =
k

8π

∫

M
d3x εijk

(
AiFjk +

2
3
Ai[Aj , Ak]

)

Abelian non-Abelian



Remarkable novel properties: 

  gauge invariant, up to a boundary term

  topological - does not depend on the metric, knows only                                                         
about the topology of space-time M

  when added to Maxwell action, induces a mass for the gauge 
boson - different from the Higgs mechanism!

  breaks Parity invariance

Chern-Simons theory

SCS =
k

8π

∫

M
d3x εijk

(
AiFjk +

2
3
Ai[Aj , Ak]

)



Chern-Simons theory and 
the vacuum of Quantum Chromodynamics

 

.i

Equation:

Solution:

Coupling of
space-time
and color:

Belavin, Polyakov,
Tyupkin, Schwartz;
‘t Hooft; ...

Integer

Chern-Simons current

DµF a
µν = 0

Q =
∫

dσµKµ



Momentum

Spin
Color 

SU(2) spin

Topology-induced change of chirality

!J = !T + !S

Right        Left    N
CS =   -2       -1        0         1          2 

instanton 

sphaleron 

Energy of 

gluon field 
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D. Leinweber

Topological number fluctuations in QCD vacuum
(“cooled” configurations)
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Topological number fluctuations in QCD vacuum
                               ITEP Lattice Group
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The chiral nature of the QCD “aether”

L

R
R

R

R

R L
LL

L

R

LeftRight

T. DeGrand, A. Hasenfratz,
Phys.Rev.D65:014503,2002



   N
CS =   -2       -1        0         1          2 

instanton 

sphaleron 

Energy of 

gluon field 
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Sphaleron transitions
at finite energy or temperature

Sphalerons:
random walk of 
topological charge at finite T:
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Sphaleron transitions
at finite energy or temperature

C. Rebbi,     http://scv.bu.edu/visualization/gallery
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Black hole

D.Son, 
A.Starinets
hep-th/
020505

Topological number diffusion at strong coupling
Chern-Simons number
diffusion rate
at strong coupling

NB: This 
calculation is 
completely 
analogous to the 
calculation of 
shear viscosity 
that led to the 
“perfect liquid”



“Physical objects and physical events are 
only "shadows" of their ideal or perfect forms, 
and exist only to the extent that they 
instantiate the perfect versions of themselves”
                        Socrates, in Platoʼs “Republic”

Socrates (Σωκράτης)
469 - 399 B.C.

       The metaphor of the cave, 380 B.C. 

“The prisoners would take the shadows to be real things and the echoes to be real 
sounds, not just reflections of reality, since they are all they had ever seen or heard.”



     The metaphor of the cave, 2012 A.D. 

“The prisoners would take the shadows to be real things and the echoes to be real 
sounds, not just reflections of reality, since they are all they had ever seen or heard.”

Black hole



DK, A.Krasnitz and R.Venugopalan,
Phys.Lett.B545:298-306,2002

P.Arnold and G.Moore,
Phys.Rev.D73:025006,2006

Diffusion of Chern-Simons number in QCD: 
real time lattice simulations 



Experimental test of Chern-Simons dynamics in 
hot QCD:   Heavy ion collisions

LHC

NICA, 
JINR



+

-

excess of positive
charge

excess of negative
charge

Electric dipole moment of QCD matter!
DK, Phys.Lett.B633(2006)260 [hep-ph/0406125]

Charge asymmetry w.r.t. reaction plane 
as a signature of strong P violation



Is there a way to observe topological charge 
fluctuations in experiment?

Relativistic ions create
a strong magnetic field:

H
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Heavy ion collisions as a source of the strongest 
magnetic fields available in the Laboratory

DK, McLerran, Warringa, 
Nucl Phys A803(2008)227

In a conducting
plasma, Faraday
induction can make
the field long-lived:
K.Tuchin, arXiv:1006.3051
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Heavy ion collisions: the strongest magnetic 
field ever achieved in the laboratory



The Chern-Simons diffusion rate in an 
external magnetic field 

35

G. Basar, DK, arXiv:1202.2161

strongly coupled N=4 SYM plasma in an external U(1)R

magnetic field through holography

weak field: 

strong field increases the rate:

dimensional reduction 



where we have introduced the linear densities of the left- and right-moving
charges.

In a real wire however the electromagnetic fields can propagate in (3+1)
dimensions, while the fermions are restricted to (1 + 1) dimensions. This
means that the chiral charge is still given by (??) and requires the existence
of both electric and magnetic fields. Let us assume that the carriers of charge
move with the Fermi velocity vF . The densities of the right- and left-moving
electric currents are thus

JR = e vF nR; JL = e vF nL. (42)

In (1 + 1) dimensions, the densities are related to the chemical potentials by
µL,R = hvF nL,R, where h is the Planck constant. The net electric current
moving through the wire is therefore

J = JR − JL =
e

h
(µR − µL). (43)

On the other hand, the difference between the chemical potentials for the
left- and right-moving charges is determined by the voltage V applied to the
wire: µR−µL = eV (the anomaly relation tells us that this voltage is created
by the electric field). Therefore, we get

J =
e2

h
V. (44)

Reconciling this with Ohm’s law J = σ V , we find that the conductance σ of
the quantum wire is given by a combination of the fundamental constants:

σ =
e2

h
(45)

5.2. Fermions in external magnetic field

∂µJ
µ =

e2

16π2

(
F µν

L F̃L,µν − F µν
R F̃R,µν

)
(46)

Jµ =
∂ log Z[Aµ, A5

µ]

∂Aµ(x)
(47)

$J =
e

2π2
µ5

$B (48)
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µ5 = A0
5

Chiral Magnetic Effect
in a chirally imbalanced plasma

Fukushima, DK, Warringa, PRD‘08
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Chiral chemical potential is formally 
equivalent to a background chiral gauge field:
In this background, and in the presence   of B, 
vector e.m. current is not conserved:

Compute the current through

The result: Coefficient is fixed 
by the axial anomaly, 
no corrections

36



Chiral magnetic conductivity:
discrete symmetries
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P-even
T-odd

P-odd

P-odd

P-odd
T-odd

P-odd effect!

T-even
Non-dissipative current!
(quantum computing etc)

cf Ohmic
conductivity:

T-odd,
dissipative

!J = σ !E



The situation is different if the field θ = θ("x, t) varies in space-time.
Indeed, in this case we have

θ ˜F µνFµν = θ∂µJ
µ
CS = ∂µ [θJµ

CS]− ∂µθJ
µ
CS. (16)

The first term on r.h.s. is again a full derivative and can be omitted; intro-
ducing notation

Pµ = ∂µθ = (M, "P ) (17)

we can re-write the Lagrangian (12) in the following form:

LMCS = −1

4
F µνFµν − AµJ

µ +
c

4
PµJ

µ
CS. (18)

Since θ is a pseudo-scalar field, Pµ is a pseudo-vector; as is clear from (18),
it plays a role of the potential coupling to the Chern-Simons current (15).
However, unlike the vector potential Aµ, Pµ is not a dynamical variable and
is a pseudo-vector that is fixed by the dynamics of chiral charge – in our case,
determined by the fluctuations of topological charge in QCD.

In (3+1) space-time dimensions, the pseudo-vector Pµ selects a direction
in space-time and thus breaks the Lorentz and rotational invariance: the
temporal component M breaks the invariance w.r.t. Lorentz boosts, while
the spatial component "P picks a certain direction in space. On the other
hand, in (2 + 1) dimensions there is no need for the spatial component "P
since the Chern-Simons current (15) in this case reduces to the pseudo-scalar
quantity ενρσAνFρσ, so the last term in (18) takes the form

∆L = c MενρσAνFρσ. (19)

This term is Lorentz-invariant although it still breaks parity. In other words,
in (2+1) dimensions the vector "P can be chosen as a 3-vector pointing in the
direction of an ”extra dimension” orthogonal to the plane of the two spatial
dimensions. This illustrates an important difference between the roles played
by the Chern-Simons term in even and odd number of space-time dimensions.
It is well-known that the term (19) leads to a gauge-invariant mass of the
photon; we will also see that it plays an important role in the Hall effect.

4.2. Maxwell-Chern-Simons equations
Let us write down the Euler-Lagrange equations of motion that follow

from the Lagrangian (18),(15) (Maxwell-Chern-Simons equations):

∂µF
µν = Jν − PµF̃

µν . (20)

5

4. Topology-induced effects in electrodynamics:
Maxwell-Chern-Simons theory

4.1. The Lagrangian

Let us begin by coupling the theory (1) to electromagnetism; the resulting
theory possesses SU(3)× U(1) gauge symmetry:

LQCD+QED = −1

4
Gµν

α Gαµν +
∑

f

ψ̄f [iγµ(∂µ − igAαµtα − iqfAµ)−mf ] ψf−

− θ

32π2
g2Gµν

α G̃αµν −
1

4
F µνFµν , (11)

where Aµ and Fµν are the electromagnetic vector potential and the corre-
sponding field strength tensor, and qf are the electric charges of the quarks.

Let us discuss the electromagnetic sector of the theory (11). Electromag-
netic fields will couple to the electromagnetic currents Jµ =

∑
f qf ψ̄fγµψf .

In addition, the term (10) will induce through the quark loop the coupling of
FF̃ to the QCD topological charge. We will introduce an effective pseudo-
scalar field θ = θ(&x, t) (playing the role of the axion field) and write down
the resulting effective Lagrangian as

LMCS = −1

4
F µνFµν − AµJ

µ − c

4
θ ˜F µνFµν , (12)

where
c =

∑

f

q2
fe

2/(2π2). (13)

check the coefficient and sign of AµJµ

This is the Lagrangian of Maxwell-Chern-Simons, or axion, electrodynam-
ics. If θ is a constant, then the last term in (12) represents a full divergence

˜F µνFµν = ∂µJ
µ
CS (14)

of the Chern-Simons current

Jµ
CS = εµνρσAνFρσ, (15)

which is the Abelian analog of (4). Being a full divergence, this term does
not affect the equations of motion and does not affect the electrodynamics.

4

From QCD to electrodynamics:
Maxwell-Chern-Simons theory

Axial current
  of quarks

Photons

EM fields in QCD “aether”
Annals Phys. 325 (2010) 205-218 



The first pair of Maxwell equations (which is a consequence of the fact that
the fields are expressed through the vector potential) is not modified:

∂µF̃
µν = Jν . (21)

It is convenient to write down these equations also in terms of the electric "E
and magnetic "B fields:

"∇× "B − ∂ "E

∂t
= "J + c

(
M "B − "P × "E

)
, (22)

"∇ · "E = ρ + c"P · "B, (23)

"∇× "E +
∂ "B

∂t
= 0, (24)

"∇ · "B = 0, (25)

where (ρ, "J) are the electric charge and current densities. One can see that
the presence of Chern-Simons term leads to essential modifications of the
Maxwell theory. Let us look at a few known examples illustrating the dy-
namics contained in Eqs(22),(23),(24),(25).

4.2.1. The Witten effect
Let us consider, following Wilczek [10], a magnetic monopole in the pres-

ence of finite θ angle. In the core of the monopole θ = 0, and away from
the monopole θ acquires a finite non-zero value – therefore within a finite
domain wall we have a non-zero "P = "∇θ pointing radially outwards from
the monopole. According to (23), the domain wall thus acquires a non-zero
charge density c"∇θ · "B. An integral along "P (across the domain wall) yields∫

dl ∂θ/∂l = θ, and the integral over all directions of "P yields the total mag-
netic flux Φ. By Gauss theorem, the flux is equal to the magnetic charge of
the monopole g, and the total electric charge of the configuration is equal to

q = c θ g =
e2

2π2
θ g =

e

2π2
θ (eg) = e

θ

π
, (26)

where we have used an explicit expression (13) for the coupling constant c,
as well as the Dirac condition ge = 2π × integer.
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Assuming that the domain walls are thin compared to the distance L between
them, we find that the system possesses an electric dipole moment

de = c θ (B · S) L =
∑

f

q2
f

(
e

θ

π

) (
eB · S

2π

)
L; (29)

in what follows we will for the brevity of notations put
∑

f q2
f = 1; it is easy

to restore this factor in front of e2 when needed.

!B

!E

∼ + eθ
π · eB

2π

∼ − eθ
π · eB

2π

θ != 0

θ = 0

θ = 0

Figure 2: Charge separation effect – domain walls that separate the region of θ != 0 from
the outside vacuum with θ = 0 become charged in the presence of an external magnetic
field, with the surface charge density ∼ eθ/π · eB/2π. This induces an electric dipole
moment signaling P and CP violation.

Static electric dipole moment is a signature of P , T and CP violation (we
assume that CPT invariance holds). The spatial separation of charge will
induce the corresponding electric field #E = c θ #B. The mixing of pseudo-
vector magnetic field #B and the vector electric field #E signals violation of P ,
T and CP invariances.
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The Chiral Magnetic Effect I:
Charge separation  
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!P ≡ !∇θ

DK, Annals Phys. 325 (2010) 205-218 
e-Print: arXiv:0911.3715



Electric dipole moment of QCD 
instanton in an external magnetic field

40

G. Basar, G. Dunne, DK, 
arXiv:1112.0532 [hep-th]

Topological charge density

Quark zero mode density

Asymmetry between left
and right modes induces 
the e.d.m. in an external B



Note that this current directed along the magnetic field !B represents a P−,
T − and CP− phenomenon and of course is absent in the ”ordinary” Maxwell
equations. Integrating the current density over time (assuming that the field
!B is static) we find that when θ changes from zero to some θ "= 0, this results
in a separation of charge and the electric dipole moment (29).

!B

θ = 0

θ̇ != 0

!J ∼ eθ̇
π · e #B

2π

Figure 3: The chiral magnetic effect – inside a domain with θ̇ "= 0 an external magnetic
field induces an electric current "J ∼ eθ̇/π · e "B/2π. θ̇ "= 0 indicates the change of the chiral
charge inducing an asymmetry between the left– and right– handed fermions inside the
domain. Note that the current "J ∼ "B is absent in Maxwell electrodynamics.

Let us discuss the meaning of formula (30) in more detail. To do this,
let us consider the work done by the electric current; to obtain the work per
unit time – the power P – we multiply both sides of (30) by the electric field
!E and integrate them over the volume (as before, we assume that θ does not
depend on spatial coordinates):

P =

∫
d3x !J · !E = −θ̇

e2

2π2

∫
d3x !E · !B = −θ̇ Q̇5, (31)

10

The chiral magnetic effect II:
chiral induction 

!J = − e2

2π2
θ̇ !B

T-even
(reversible,
non-dissipative)



Holographic chiral magnetic effect:
the strong coupling regime (AdS/CFT)

H.-U. Yee, arXiv:0908.4189,
JHEP 0911:085, 2009;
V. Rubakov, arXiv:1005.1888, ...

A. Rebhan et al, JHEP 0905, 084 (2009), G.Lifshytz, M.Lippert, arXiv:0904.4772;...
E. D’ Hoker and P. Krauss, arXiv:0911.4518; A. Gorsky, P. Kopnin, A. Zayakin, arXiv:1003.2293,
CME persists at strong coupling - hydrodynamical formulation?

7

σ′′
χ

σ′
χ

ω/T

σχ(ω)
σ0

3020100

1

0.5

0

FIG. 3: Real (red, solid) and imaginary (blue, dashed) part of
the leading order normalized Chiral Magnetic conductivity at
high temperatures (T > µ5) for homogeneous magnetic fields
(p = 0). At ω = 0 the normalized conductivity is equal to 1.

conductivity drops from σ0 at ω = 0 to σ0/3 just away
from ω = 0.

D. Discussion

We display the real and imaginary part for T = 0, p =
0.1µ5 and µ = 0 in Fig. 1. As was argued at the end of
the previous subsection, it can be seen in this figure that
the real part of the Chiral Magnetic conductivity drops
from σ0 at ω = 0 to σ0/3 just away from ω = 0. Also
the resonance at ω = 2µ5 is clearly visible. The width of
the imaginary part at the resonance is equal to 2p. The
real part of the conductivity becomes negative above the
resonance frequency. This is a typical resonance behavior
and implies that when the imaginary part vanishes the
response is 180 degrees out of phase with the applied
magnetic field.

In Fig. 2 we display the real and imaginary part for
T = 0, p = 0.1µ5 and µ = 1.5µ5. In this case there are
resonances at ω = 5µ5 and ω = µ5. Equation (45) shows
that the imaginary part is proportional to ω2, therefore
the second resonance at ω = 5µ5 is much stronger than
the first one at ω = µ5. Because the second resonance
is due to the right-handed modes, and the first one due
to left-handed, the contribution of the second resonance
has opposite sign to the first resonance.

The real and imaginary part of the Chiral Magnetic
conductivity at high temperatures (T > µ5) are displayed
in Fig. 3. This figure is the most relevant for QCD at
very high temperatures, since then loop corrections will
be small. As argued in the previous subsection it can be
seen in the figure that the real part of the conductivity
drops from σ0 at ω = 0 to σ0/3 just away from ω = 0.

Let us now study the induced current in a magnetic

FIG. 4: Induced current in time-dependent magnetic field,
Eq. (49), as a function of time, at very high temperature.
The results are plotted for different values of the characteristic
time scale τ of the magnetic field.

field of the form created during heavy ion collisions. For
simplicity we approximate the two colliding nuclei by
point like particles like in Ref. [19]. This gives a reason-
able approximation to the more accurate methods dis-
cussed in Refs. [17, 18] and is most reliable for large im-
pact parameters. The magnetic field at the center of the
collision can then be written as

B(t) =
1

[1 + (t/τ)2]3/2
B0, (49)

with τ = b/(2 sinhY ) and eB0 = 8ZαEM sinhY/b2. Here
b denotes the impact parameter, Z the charge of the nu-
cleus, and Y the beam rapidity. For Gold-Gold (Z = 79)
collisions at 100 GeV per nucleon one has Y = 5.36. At
typical large impact parameters (say b = 10 fm) one finds
eB0 ∼ 1.9 × 105 MeV2 and τ = 0.05 fm/c. For 31 GeV
per nucleon (Y = 4.19) Gold-Gold collsions one finds at
b = 10 fm, eB0 ∼ 5.9 × 104 MeV2 and τ = 0.15 fm/c.
The Fourier transform of Eq. (49) equals

B̃(ω) = 2τ2|ω|K1(τ |ω|)B0, (50)

where K1(z) denotes the first-order modified Bessel func-
tion of the second kind.

For illustration purposes we will assume that our mag-
netic field is (unlike in heavy ion collisions) homogeneous.
The induced current can be found by applying Eq. (19).
We display the induced current in the magnetic field of
Eq. (49) in a system with nonzero chirality at very high
temperatures in Fig. 4. The induced current is plotted as
a function of time for three different characteristic time
scales τ of the magnetic field.

In any general decaying magnetic field, the only rel-
evant frequencies are the ones which are smaller than
of order the inverse life-time of the magnetic field, ω <∼

D.K., H. Warringa 
Phys Rev D80 (2009) 034028
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asymmetry can be investigated experimentally using the
observables proposed in Ref. [24]. Preliminary data of the
STAR collaboration has been presented in Refs. [25, 26].
Implications of the Chiral Magnetic Effect on astrophys-
ical phenomena have recently been discussed in Ref. [27];
another astrophysical implication can be found in [28].

A system of massless fermions with nonzero chirality
can be described by a chiral chemical potential µ5 which
couples to the zero component of the axial vector current
in the Lagrangian. The induced current in such situa-
tion can be written as j = σχB, where σχ is the Chiral
Magnetic conductivity. For constant and homogeneous
magnetic fields its value is determined by the electro-
magnetic axial anomaly and for one flavor and one color
equal to [22, 29, 30] (see also [31])

σχ(ω = 0,p = 0) ≡ σ0 =
e2

2π2
µ5, (2)

where ω and p denote frequency and momentum respec-
tively, and e equals the unit charge. For a finite number
of colors Nc and flavors f one has to multiply this result
by Nc

∑
f q2

f where qf denotes the charge of a quark in
units of e. The generation of currents due to the anomaly
in background fields or rotating systems is also discussed
in related contexts in Refs. [31–35].

For constant magnetic fields which are inhomogeneous
in the plane transverse to the field one finds that the total
current J along B equals [22],

J = e
⌊eΦ

2π

⌋Lzµ5

π
, (3)

where Lz is the length of the system in the z-direction
and the flux Φ is equal to the integral of the magnetic
field over the transverse plane,

Φ =
∫

d2x B(x, y). (4)

The floor function "x# is the largest integer smaller than
x. The quantity "eΦ/(2π)# in Eq. (3) is equal to the
number of zero modes in the magnetic field [36].

To compute the current generated by a configuration
of specific topological charge, one should express µ5 in
terms of the chirality N5. By using the anomaly relation
one can then relate N5 to the topological charge. This is
discussed in detail in Ref. [22].

The aim of this paper is to study how a system with
constant nonzero chirality responds to a time dependent
magnetic field. This is interesting for phenomenology
since the magnetic field produced with heavy ion colli-
sions depends strongly on time. To obtain the induced
current in a time-dependent magnetic field, we will com-
pute the Chiral Magnetic conductivity for nonzero fre-
quencies and nonzero momenta using linear response the-
ory. We will compute the leading order conductivity and
leave the inclusion of corrections due to photon and or
gluon exchange for future work. In leading order the Chi-
ral Magnetic conductivity for an electromagnetic plasma

and quark gluon plasma are equal (up to a trivial factor
of Nc). Since we do not take into account higher order
corrections, some of our results for QCD will only be
a good approximation in the limit of very high tempera-
tures where the strong coupling constant αs is sufficiently
small.

We will take the metric gµν = diag(+,−,−,−).
The gamma matrices in the complete article satisfy
{γµ, γν} = 2gµν . We will use the notation p for both
the four-vector pµ = (p0,p) and the length of a three-
vector p = |p|.

II. KUBO FORMULA FOR CHIRAL
MAGNETIC CONDUCTIVITY

For small magnetic fields, the induced vector current
can be found using the Kubo formula. This formula tells
us that to first order in the time-dependent perturbation,
the induced vector current is equal to retarded correlator
of the vector current with the perturbation evaluated in
equilibrium. More explicitly, one finds that

〈jµ(x)〉 =
∫

d4x′ Πµν
R (x, x′)Aν(x′), (5)

where jµ(x) = eψ̄(x)γµψ(x) and the retarded response
function Πµν

R is given by

Πµν
R (x, x′) = i〈[jµ(x), jν(x′)]〉θ(t− t′). (6)

The equilibrium Hamiltonian is invariant under trans-
lations in time and space, therefore we can use that
Πµν

R (x, x′) = Πµν
R (x−x′). Let us take a vector field of the

following specific form Aν(x) = Ãν(p)e−ipx. The Kubo
formula now becomes,

〈jµ(x)〉 = Π̃µν
R (p)Ãν(p)e−ipx, (7)

where

Π̃µν
R (p) =

∫
d4x eipxΠµν

R (x). (8)

In order to compute the Chiral Magnetic conductiv-
ity we will take a time-dependent magnetic field pointing
in the z-direction. Because of Faraday’s law (∇ × E =
−∂B/∂t), such time-dependent magnetic field comes al-
ways together with a perpendicular electric field. Let
us choose a gauge such that the only component of the
vector field that is non-vanishing is Ay. Then Bz(x) =
∂xAy(x) so that B̃z(p) = ip1Ã2(p). Using Eq. (7) we
find that the induced vector current in the direction of
the magnetic field can now be written as

〈jz(x)〉 = σχ(p)B̃z(p)e−ipx, (9)

where the Chiral Magnetic conductivity equals

σχ(p) =
1

ip1
Π̃23

R (p) =
1

2ipi
Π̃jk

R (p)εijk. (10)

Strong coupling

Weak coupling



“Numerical evidence for chiral magnetic effect 
in lattice gauge theory”,
P. Buividovich, M. Chernodub, E. Luschevskaya, M. Polikarpov,  ArXiv 0907.0494; PRD

SU(2) quenched, Q = 3; Electric charge density (H) - Electric charge density (H=0)

Red - positive charge
Blue - negative charge



“Chiral magnetic effect in 2+1 flavor QCD+QED”,
M. Abramczyk, T. Blum, G. Petropoulos, R. Zhou,  ArXiv 0911.1348;

2+1 flavor Domain Wall Fermions, fixed topological sectors, 16^3 x 8 lattice

Red - positive charge
Blue - negative charge



45

No sign problem for the chiral chemical potential 
- direct lattice studies are possible

Fukushima, DK, 
Warringa, PRD‘08
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arXiv:1105.0385, PRL 



Hydrodynamics:
an effective low-energy

Theory Of Everything (TOE)
• Hydrodynamics states that the response of the 

fluid to slowly varying perturbations is 
completely determined by conservation laws 
(energy, momentum, charge, ...)

47Little Bang Big Bang



The rise, fall and rebirth of 
hydrodynamical approach to hadronic matter

48

• Early applications (Fermi, Landau, Hagedorn, ...) 
were motivated by the idea of strong interactions 
among the constituents in dense matter;                                        
(positive beta functions (screening) in all known 
theories);

• Asymptotic freedom (anti-screening), Bjorken 
scaling, partons

 quasi-ideal quark-gluon plasma, applicability of 
hydrodynamics questioned

• RHIC, LHC: strongly coupled plasma;
new theoretical tool: holography



Hydrodynamics

49

P. Sorensen
[STAR]
QM 2011

charge dependence!



The remarkable success of hydrodynamics 
at RHIC and LHC

50

R. Snellings [ALICE Coll.] Talk at QM2011



Quantifying the transport 
properties of QCD matter

• Hydrodynamics:                                                                      
an effective low-energy theory, expansion in the ratio of 
thermal length 1/T to the typical variation scale L,  

• Each term in this derivative expansion is multiplied by an 
appropriate transport coefficient

51

very small shear viscosity -
“perfect liquid”; strong coupling 

ε ≡ 1
LT



33

Low-energy effective ToE: hydrodynamics

Caveman’s view:   
 Shear viscosity

 Bulk viscosity          

 Rate of topological     
transitions            

Holographic view:

Particle contents of 
supergravity:
gravitons, dilatons,
axions
= fields on the boundary

       AdS5 “Reality”:
 Graviton propagation

 Dilaton propagation

 Axion propagation
Deviation from conformal symmetry



Hydrodynamics and anomalies

• Hydrodynamics: an effective low-energy TOE. 
States that the response of the fluid to slowly 
varying perturbations is completely 
determined by conservation laws (energy, 
momentum, charge, ...)

• Conservation laws are a consequence of 
symmetries of the underlying theory 

• What happens to hydrodynamics when these 
symmetries are broken by quantum effects 
(anomalies of QCD and QED)? 53



∂µsµ ≥ 0

Chiral MagnetoHydroDynamics (CMHD) -
relativistic hydrodynamics with triangle 

anomalies and external electromagnetic fields

54

First order (in the derivative expansion) formulation:
D. Son and P. Surowka, arXiv:0906.5044

Constraining the new anomalous transport coefficients:
positivity of the entropy production rate, 

CME
(for chirally
imbalanced
matter)



Chiral MagnetoHydroDynamics (CMHD) -
relativistic hydrodynamics with triangle 

anomalies and external electromagnetic fields

55

First order hydrodynamics has problems with causality and is 
numerically unstable, so second order formulation is necessary;

Complete second order formulation of CMHD:
DK and H.-U. Yee, 1105.6360; Phys Rev D 

Many new transport coefficients - use conformal/Weyl invariance;
still 18 independent transport coefficients related to the anomaly. 
15 that are specific to 2nd order:

new

Many new anomaly-induced phenomena!



Chiral MagnetoHydroDynamics (CMHD) -
relativistic hydrodynamics with triangle 

anomalies and external electromagnetic fields

56

DK and H.-U. Yee, 1105.6360Positivity of entropy production - 
still too many unconstrained 
transport coefficients...

Is there another guiding principle?



No entropy production from 
T-even anomalous terms

where we have introduced the linear densities of the left- and right-moving
charges.

In a real wire however the electromagnetic fields can propagate in (3+1)
dimensions, while the fermions are restricted to (1 + 1) dimensions. This
means that the chiral charge is still given by (32) and requires the existence
of both electric and magnetic fields. Let us assume that the carriers of charge
move with the Fermi velocity vF . The densities of the right- and left-moving
electric currents are thus

JR = e vF nR; JL = e vF nL. (42)

In (1 + 1) dimensions, the densities are related to the chemical potentials by
µL,R = hvF nL,R, where h is the Planck constant. The net electric current
moving through the wire is therefore

J = JR − JL =
e

h
(µR − µL). (43)

On the other hand, the difference between the chemical potentials for the
left- and right-moving charges is determined by the voltage V applied to the
wire: µR−µL = eV (the anomaly relation tells us that this voltage is created
by the electric field). Therefore, we get

J =
e2

h
V. (44)

Reconciling this with Ohm’s law J = σ V , we find that the conductance σ of
the quantum wire is given by a combination of the fundamental constants:

σ =
e2

h
(45)

5.2. Fermions in external magnetic field

∂µJ
µ =

e2

16π2

(
F µν

L F̃L,µν − F µν
R F̃R,µν

)
(46)

Jµ =
∂ log Z[Aµ, A5

µ]

∂Aµ(x)
(47)

$J =
e2

2π2
µ5

$B (48)
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57

P-even
T-odd

P-odd

P-odd

P-odd
T-odd

P-odd effect!

T-even
                           Non-dissipative current!
    (time-reversible - no arrow of time, no entropy production)

cf Ohmic
conductivity:

T-odd,
dissipative

!J = σ !E

DK and H.-U. Yee, 1105.6360



∂µsµ ≥ 0

∂µsµ ≤ 0

∂µsµ = 0

No entropy production from 
P-odd anomalous terms

58

DK and H.-U. Yee, 1105.6360

Mirror reflection:
entropy decreases ?

Decrease is ruled 
out by 2nd law of 
thermodynamics

Entropy grows



No entropy production from 
T-even anomalous terms

59

1st order hydro:  Son-Surowka results are reproduced

2nd order hydro: 13 out of 18 transport coefficients
                            are computed;
                            but is the “guiding principle” correct?

Can we check the resulting relations between the transport
coefficients? 
e.g. 
                         

DK and H.-U. Yee, 1105.6360



The fluid/gravity correspondence

60
DK and H.-U. Yee, 1105.6360

Long history:  
                         Hawking, Bekenstein, Unruh;
                         Damour ’78;
                         Thorne, Price, MacDonald ’86 (membrane paradigm)
                          Recent developments motivated by AdS/CFT:  

                      Policastro, Kovtun, Son, Starinets ’01 (quantum bound) 
                      Bhattacharya, Hubeny, Minwalla, Rangamani ’08 
                      (fluid/gravity correspondence)

Some of the transport coefficients of 2nd order hydro computed; 
enough to check some of our relations, e.g. J. Erdmenger et al, 0809.2488;

N. Banerjee et al, 0809.2596 

It works Other holographic
checks work as well:



DK, H.-U. Yee, 
arXiv:1012.6026 [hep-th];
PRD

The CME in relativistic hydrodynamics: 
The Chiral Magnetic Wave

61

Propagating chiral wave: (if chiral symmetry
                                          is restored)

Gapless collective mode is the carrier of CME current in MHD:

CME                         Chiral separation

Electric

Chiral



The Chiral Magnetic Wave

62

DK, H.-U. Yee, 
arXiv:1012.6026 [hep-th]

The velocity of CMW
computed in Sakai-Sugimoto
model (holographic QCD)

In strong magnetic field, CMW 
propagates with the speed of light!

Chiral

Electric
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+

+
-

Chiral magnetic wave or
a mundane effect (Coulomb, resonances)?

Y.Burnier, DK, J. Liao, H.-U.Yee, 
arXiv:1103.1307 - PRL

Anomaly-induced 
quadrupole moment 
at finite baryon 
density



Slide from S. Voloshin



NB: P-even quantity (strength of P-odd fluctuations)



S.Esumi et al 
[PHENIX Coll]
April 2010



In Brookhaven Collider, Scientists Briefly Break a Law of 
Nature
  
By DENNIS OVERBYE
Published: February 15, 2010
Physicists said Monday that they had whacked a tiny region of space with enough energy to briefly distort the laws of physics, 
providing the first laboratory demonstration of the kind of process that scientists suspect has shaped cosmic history.

Quark Soup
Physicists create conditions not seen since the big bang.
Feb 16, 2010

67

Sharon Begley

Scientists re-create high temperatures from Big Bang

Hottest Temperature Ever Heads Science to Big Bang

Atom smasher shows vacuum of space 
in a twist

  17:27 15 February 2010 by Rachel Courtland



Are the observed fluctuations of charge asymmetries 
a convincing evidence for the local parity violation? 

68

A number of open questions that still have to be clarified:

in-plane vs out-of-plane,              e.g. A. Bzdak, V. Koch, J. Liao,
new observables?                                  arXiv:0912.5050; 1005.5380; ...

physics “backgrounds”               e.g. M. Asakawa, A. Majumder, B. Muller,
                                                                      arXiv:1003.2436
                                                                     S. Pratt and S. Schlichting, arXiv:1005.5341
                                                                     F. Wang, arXiv: 0911.1482; ...
Fortunately, a number of analytical and numerical (lattice)
tools are available to theorists,
and the new data (low energy, PID asymmetries, U-U)
will hopefully come - this question can be answered! 
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B. Mohanty [STAR Coll] QM 2011

Signal 
disappears



CME studies at the LHC

70P. Cristakoglou, J. Schukraft [ALICE Coll] Talks at QM 2011



Λ π+71

A new test: baryon asymmetry

CME Vorticity-induced 
“Chiral Vortical Effect”

CME: 
(almost) only 
electric charge

CVE: 
(almost) only 
baryon charge

DK, D.T.Son
arXiv:1010.0038; PRL

There has to be a positive correlation between 
electric charge and baryon number! mixed correlators - e.g.  



72 T.Hatsuda

What are the implications for 
the Early Universe?



Magnetic field in M51:
Polarization of emission
Beck 2000

Magnetic fields are abundant
in the Universe at large scales:

3 µG field in Milky Way;

1-40 µG fields in 
clusters of galaxies

What is the origin of 
cosmic magnetic fields?

Is the CMB polarized?



Primordial magnetic field (E.Fermi, 1949)?

Dynamo in proto-galaxy? Stars? Galaxy?

Primordial magnetic helicity generation at 
the QCD phase transition? 

What is the origin of magnetic fields 
in the Universe?

Coupling of chromo-magnetic and magnetic fields;
axions; instability in Maxwell-Chern-Simons theory, ...=>



1. B violation
2. CP violation
3. Non-equilibrium
      dynamics

A.D. Sakharov,
JETP Lett. 5 (1967) 24

What is the origin  
of the matter-antimatter asymmetry 

in the Universe? 

75

Can CP violation in the Big Bang
be a dynamical fluctuation, similar
to what happens in heavy ion collisons?



Novel appplication: graphene                          Massless (2+1) fermions

Chiral fermions and topology in
condensed matter systems

Similar to QGP in
several ways:
strongly coupled, perfect liquid 
behavior, chiral fermions, ..
Magnetized graphene: e.g. I.Aleiner, DK, A. Tsvelik, Phys Rev B ’07;
                                           M.Khodas, I.Zaliznyak, DK, Phys Rev B’09

M.Muller, J.Schmalian, L. Fritz,



Summary

Interplay of topology, anomalies and magnetic field 
leads to the Chiral Magnetic Effect;
confirmed by lattice QCD x QED, 

evidence from RHIC and LHC

CME and related anomaly-induced phenomena
are an integral part of relativistic hydrodynamics

(Chiral MagnetoHydroDynamics)


