When you see a title like that, you need to worry: “Uh-oh, sounds philosophical.”

Well, I just wanted to tell you two concrete stories about cases when my colleagues and I managed to
do something useful by virtue of knowing something about inference. The ideas we needed were
things I didn’t know a few years ago, so I thought you might be interested too.

Inference In biological physics

Phil Nelson
University of Pennsylvania
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we need to make sure we don’t forget to tell our undergraduates why theory exists. (Are
there any students here today?) Remember, to them “theory” is a strongly negative word.
(“How’s it going in Physics N? Too much theory.”) To them it means “stuff that won’t get me
a job because it’s not relevant to anything practical.” To them it’s at best decorative, like
music or art. If we think there’s more to it than that, we’d better not forget to tell them

“If your experiment requires statistics, then you ought to have done a
better experiment.” -- Ernest Rutherford

“Of course that’s what we do -- everybody knows that.” -- No.
They don’t.
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start with a ftopic that may not be obviously biophysical in character.
Suppose | stood here and said ‘all men are mortal; Socrates is mortal; therefore Socrates is a man”

- /——

mortal

In classical logic it’s fairly easy to spot errors of inference.

——
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An everyday question In clinical practice

To diagnose colorectal cancer, the hemoccult test—among others—is
conducted to detect occult blood in the stool. This test is used from a
particular age on, but also in routine screening for early detection of
colorectal cancer. Imagine you conduct a screening using the hemoc-
cult test in a certain region. For symptom-free people over 50 years old
who participate in screening using the hemoccult test, the following
information is available for this region:

The probability that one of these people has colorectal cancer is 0.3
percent. If a person has colorectal cancer, the probability is 50 percent
‘that he will have a positive hemoccult test. If a person does not have
colorectal cancer, the probability is 3 percent that he will still have a

positive hemoccult test. Imagine a person (over age 50, no symptoms)
who has a positive hemoccult test in your screening. What is the prob-
ability that this person actually has colorectal cancer? percent

G. Gigerenzer, Calculated risks
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G. Gigerenzer, Calculated risks
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Work 1t out

We are asked for P(sick | +) = B/ (B+D).

A=Sick, -

C=Healthy, -

B=Sick, +
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FINisn working It out

P(sick|+) = P(+|sick) x

[s that last factor a big deal?
P(sick) was given, but we need:

P(sick)  acsia -

P(—l—) § C=Healthy, -
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P(+)=B+ D
B
= A+B(A+B) | C+D(C+D)
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— (0.5)(0.003) + (0.03)(0.997) ~ 0.03
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FINisn working It out

Plsick{+) = P(+sick) x o) = ||
[s that last factor a big deal? B=Sick, +
P(sick) was given, but we need: D=Healthy, +
P(+)=B+D
5 AL e (C + D)
Ao C+D

= P(+|sick)P(sick) + P(+|healthy)P(healthy)
— (0.5)(0.003) + (0.03)(0.997) ~ 0.03

P(sick) 0.003 0.1 [t's huge: a positive test result means
P(+) ™ 0.03 7 onlya5% chance you're sick. Not 97%.
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Part |l: Changepoint analysis in single-
molecule [ IRF

JF Beausang, Yale Goldman, PN

¢ Sometimes our model is not obviously connected with what we can actually measure experimentally,
but and we need to makes a connection.

* Sometimes the model that interests us involves the behavior of actors that we can only see indirectly in our
data; theory may be needed to separate them out from each other, and from noise.

Many thanks to Haw Yang. See also Lucas P. Watkins
and Haw Yang J. Phys. Chem. B 2005
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MyosinV Processivity

We'd like to know things like: How does it walk? What are the steps in the kinetic
pathway? What is the geometry of each state?

One classic approach is to monitor the position in space of a marker (e.g. a bead) attached
to the motor. But this does not address the geometry of each state.
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MyosinV Processivity

We'd like to know things like: How does it walk? What are the steps in the kinetic
pathway? What is the geometry of each state?

One classic approach is to monitor the position in space of a marker (e.g. a bead) attached
to the motor. But this does not address the geometry of each state.

The approach I'll discuss involves attaching a
bifunctional fluorescent label to one lever arm. The
label has a dipole moment whose orientation in
space reflects that of the arm.
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Polarized total internal reflection
fluorescence microscopy

Quartz
Slide
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Fluorescence illumination by the evanescent wave eliminates a lot of noise, and

importantly, maintains the polarization of the incident light.

To tickle the fluorophore with every possible polarization, we need the incoming light

to have at least two different beam directions.
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Dol- [ IRF setup
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*E%L p(C=0°)
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8 polarized illuminations x 2 detectors = 16 fluorescent intensities per cycle
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Current state of the art

Myosin V - 5uM ATP
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It’s a bit more meaningtul to convert from lab-frame angles 0,¢ to actin-frame angles o,f3. Even

then, however, state of the art calculations give pretty noisy determinations, with pretty poor

time resolution.

You could easily miss a short-lived state -- e.g. the elusive diffusive-search step (if it exists).

Can’t we do better?

JN Forkey et al. Nature 2003
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binned tot. Inten: 1221, 1322

Unfortunately, the total photon counts from a L |
fluorescent probe may not be very informative.
Here we divided a time period of interest into 20 £ of
d © I

bins. There is some Pois¢ porizontal axis is n % |
time. Vertical axis s [ }

counts, of course. is binned photon = 3
( [ATP]=10UM ) count, PFI =polarized |
fluorescence intensity

% 4 OTO OT2 ()74 076 078 1TO

Time (a.u.)

JF Beausang, YE Goldman, and PCN, Meth. Enzymol. 487:431 (2011).
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If we classify the photons by polarization and bin them
separately, that reveals a definite changepoint. But when

100F

S exactly did it occur? Probably not at the dashed line shown,
;%: ol but how can we be more precise?
- \ _
ol _ If we choose wider bins, we’ll get worse time resolution; if
ik . e : : we choose narrower bins, we’ll get worse shot-noise errors.
S B Can we evade the cruel logic of photon statistics?
It turns out that binning the data destroyed some e =
information. Something magical happens if instead of s}
binning, we just we plot photon arrival time versus photon EI
sequence number. Despite some ripples from Poisson \GET e
statistics, it’s obvious that each trace has a sharp e
changepoint, and moreover that the two changepoints e
found independently in this way are simultaneous. ) AT S AN B LT L ot il
o wo @o  so 0w 1w
(A similar approach in the context of FRET was pioneered séquence number
by Haw Yang.)

JF Beausang, YE Goldman, and PCN, Meth. Enzymol. 487:431 (2011).
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Now that | have your attention

e Why did that trick work? How did we get such great time resolution from such cruddy data?

e How well does it work? If we have even fewer photons, for example because a state is short-
lived, how can we quantify our confidence that any changepoint occurred at all?

® Could we generalize and automate this trick? Ultimately we’ll want to handle data with multiple
polarizations, and find lots of changepoints.
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e Why did that trick work? How did we get such great time resolution from such cruddy data?

e How well does it work? If we have even fewer photons, for example because a state is short-
lived, how can we quantify our confidence that any changepoint occurred at all?

® Could we generalize and automate this trick? Ultimately we’ll want to handle data with multiple
polarizations, and find lots of changepoints.

The appropriate tool is maximum-likelihood analysis:

Focus on just one “flavor” of photons (e.g. one polarization).

Suppose that in total time T we catch N photons at times #,... fx.

We wish to explore the hypothesis that photons are arriving in a Poisson process with rate R from time O to time
t-, and thereafter arrive in another Poisson process with rate R’.

We want to find our best estimates of the three parameters t, R, and R’, find confidence intervals for them, and
compare the null hypothesis that there was no changepoint.

To do this, we ask for the “Likelihood,” the probability that the data we actually observed would have been
observed in a world described by our model with particular values of the unknown fit parameters:
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e Why did that trick work? How did we get such great time resolution from such cruddy data?

e How well does it work? If we have even fewer photons, for example because a state is short-
lived, how can we quantify our confidence that any changepoint occurred at all?

® Could we generalize and automate this trick? Ultimately we’ll want to handle data with multiple
polarizations, and find lots of changepoints.

The appropriate tool is maximum-likelihood analysis:

Focus on just one “flavor” of photons (e.g. one polarization).

Suppose that in total time T we catch N photons at times #,... fx.

We wish to explore the hypothesis that photons are arriving in a Poisson process with rate R from time O to time
t-, and thereafter arrive in another Poisson process with rate R’.

We want to find our best estimates of the three parameters t, R, and R’, find confidence intervals for them, and
compare the null hypothesis that there was no changepoint.

To do this, we ask for the “Likelihood,” the probability that the data we actually observed would have been
observed in a world described by our model with particular values of the unknown fit parameters:

ty /AL : S
R At if a photon in this slice
log Pl i bn | R R = lo
s Pt V| ) kz::l - (1 — RAt) otherwise
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Now that | have your attention

e Why did that trick work? How did we get such great time resolution from such cruddy data?

e How well does it work? If we have even fewer photons, for example because a state is short-
lived, how can we quantify our confidence that any changepoint occurred at all?

® Could we generalize and automate this trick? Ultimately we’ll want to handle data with multiple
polarizations, and find lots of changepoints.

The appropriate tool is maximum-likelihood analysis:

Focus on just one “flavor” of photons (e.g. one polarization).

Suppose that in total time T we catch N photons at times #,... fx.

We wish to explore the hypothesis that photons are arriving in a Poisson process with rate R from time O to time
t-, and thereafter arrive in another Poisson process with rate R’.

We want to find our best estimates of the three parameters t, R, and R’, find confidence intervals for them, and
compare the null hypothesis that there was no changepoint.

To do this, we ask for the “Likelihood,” the probability that the data we actually observed would have been
observed in a world described by our model with particular values of the unknown fit parameters:

PIAY ; : : .
R At if a photon in this slice
lo Pt,,t R,R,,t* = lo
6 " ) kz::l - (1 — RAt) otherwise
i jft 1 R At if a photon in this slice
0
k'=t, /At+1 3 (1 3 R/ At) otherwise
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From previous slide: In total time T we catch N photons at times tj, ... tn.
Hypothesis is that photons are arriving in a Poisson process with rate R from time 0 to time -, and

thereafter arrive in another Poisson process with rate R’.

R At if a photon in this slice
00 B b it ) — lo
o i ) kz::l > (1 — RAt) otherwise
i th | N if a photon in this slice
0
Kty At+1 ; (1 — R'At) otherwise

Now: Divide the N photons into n that arrived before the putative changepoint, and n’=N-n that

arrived after.
Take the limit At — O:
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From previous slide: In total time T we catch N photons at times tj, ... tn.
Hypothesis is that photons are arriving in a Poisson process with rate R from time 0 to time -, and

thereafter arrive in another Poisson process with rate R’.

&N

R if a photon in this sli
log P(t1,...,tn|R, R, t.) = Z log B L e e A AT
k=1

(1 — RAt) otherwise

7 2l | R At if a photon in this slice
E og .
i (1 — R’ At) otherwise

Now: Divide the N photons into 7 that arrived before the putative changepoint, and n’=N-n that

arrived after.
Take the limit At — O:
L«

P =~ Nlog(At) + nlog R+ n'log R — (Kt —n) (RAt) — (TA_Tt* —1- (N—n)) (R’At)

~ const + nlog R+ n'log R’ — Rt, — R'(T — t,)
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From previous slide: In total time T we catch N photons at times tj, ... tn.
Hypothesis is that photons are arriving in a Poisson process with rate R from time 0 to time -, and

thereafter arrive in another Poisson process with rate R’.

&N

R At if a photon in this sli
log P(t1,...,tn|R, R, t.) = Z log B L e e A AT
k=1

(1 — RAt) otherwise

7 2l | R At if a photon in this slice
E og .
i (1 — R’ At) otherwise

Now: Divide the N photons into 7 that arrived before the putative changepoint, and n’=N-n that

arrived after.
Take the limit At — O:
L«

P =~ N log(At) + nlog R+ n'log R' — (Kt — n) (RAt) = (TA_Tt* —1— (N — n)) (R’At)

~ const + nlog R+ n'log R’ — Rt, — R'(T — t,)

Maximize this first over R and R’:

Bi="n/t; R )
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From previous slide: In total time T we catch N photons at times tj, ... tn.
Hypothesis is that photons are arriving in a Poisson process with rate R from time 0 to time ¢, and

thereafter arrive in another Poisson process with rate R’.

&N

R At if a photon in this sli
log P(t1,...,tn|R, R, t.) = Z log B L e e A AT
k=1

(1 — RAt) otherwise

7 2 | R At if a photon in this slice
E og .
i (1 — R’ At) otherwise

Now: Divide the N photons into 7 that arrived before the putative changepoint, and n’=N-n that

arrived after.
Take the limit At — O:
L«

P ~ Nlog(At) + nlog R+ n'log R' — (Kt - n) (RAt) — (TA_Tt* —1— (N — n)) (R’At)

~ const + nlog R+ n'log R’ — Rt, — R'(T — t,)

Maximize this first over R and R’:
Bi="n/t; R )

OK, duh, that was no surprise! But it does explain why we can just lay a ruler along the cumulative
plot to get our best estimate of the before and after rates.
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From previous slide: In total time T we catch N photons at times tj, ... tn.
Hypothesis is that photons are arriving in a Poisson process with rate R from time 0 to time ¢, and

thereafter arrive in another Poisson process with rate R’.

b IXE . . : :
RNt if a photon in this slice
Leyod 2l S o e e lo
e i ) l; > (1 — RAt) otherwise
i Tﬁt | N if a photon in this slice
0
A g e 2 (1 — R’ At) otherwise

Now: Divide the N photons into 7 that arrived before the putative changepoint, and n’=N-n that

arrived after.
Take the limit At — O:

P ~ Nlog(At) + nlog R+ n'log R' — (i_*t - n) (RAt) — (TA_Tt* —1— (N — n)) (R’At)

~ const + nlog R+ n'log R’ — Rt, — R'(T — t,)

Maximize this first over R and R’:
Bi="n/t; R )

OK, duh, that was no surprise! But it does explain why we can just lay a ruler along the cumulative
plot to get our best estimate of the before and after rates.

More interestingly, we can substitute these optimal rates into the formula for P to find the
likelihood as a function of putative changepoint:
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Application

25 O .
o Here’s some very fake data; the photons arrive
o uniformly, not at random.
20
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Here are two lines corresponding to
) non-optimal choices of the
: 20| changepoint. We’d like to see the
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Application

25 O .
o Here’s some very fake data; the photons arrive
o uniformly, not at random.
20
25 4 :
Here are two lines corresponding to
o ) non-optimal choices of the
: 20| changepoint. We’d like to see the
: likelihood function and how it
L . selects the “right” changepoint,
& 15} N A 7 5
£ Yyl which for fake data is known.
§ | 4
5 - 5 A
g 10} o o
L gt
0 Lo
’ 5 Lo 72t
L
R
0 ! 1 : : l 1 1 1 g TEF A
0 5 10 15 20 25 30 2 '\.\
photon anival time 2 Ll .
/ I\\\
g S/ AN
//‘/ .\-\\
821/ .
Here is our log-likelihood wal 7
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Pt
= 55 X L Left: Some more realistic (Poisson-arrival) simulated data,
= e ' shown in traditional binned form and in the improved
Q : :

O | version.
c 10 |
B T/
G 2
D_O e O e ey

0.2 0.4 0.6 0.8 1.0

TmE; el Right: Likelihood function for placement of the
S changepoint. Dashed line, maximume-likelihood point.

52808 | Black triangle: Actual changepoint used in the simulation.

© 0.6 |

Q [

£ 0.4 |

I

0.2 ,
OO el 18 en .Y oty ey S |

0 50 100 150 200
Photon sequence number

JF Beausang, YE Goldman, and PCN, Meth. Enzymol. 487:431 (2011).
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£ 25

= 55 Left: Some more realistic (Poisson-arrival) simulated data,
= e shown in traditional binned form and in the improved

o ;

© 10 version.

@)
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ez

o 0

0.2 0.4 0.6 0.8 1.0

TmE; el Right: Likelihood function for placement of the
changepoint. Dashed line, maximum-likelihood point.
Black triangle: Actual changepoint used in the simulation.
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JF Beausang, YE Goldman, and PCN, Meth. Enzymol. 487:431 (2011).
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Oh, yes -- the method also works on multiple-channel data. Left: one
channel (red) starts with rare photons, then jumps to higher intensity.
Another channel (blue) does the opposite. The sum of the intensities
(black) doesn’t change much at all.

Middle: “kink” representations of the same data. Right: both channels
contribute to a likelihood function with a robust peak, even though there
were only a total of just 200 photons in the entire dataset.

OGN oy
AN

OI\JCDO

Counts/bin

0 02 04 06 08 10 0 50 100 150 200 0750 100 150 200
time, a.u. sequence number sequence number

JF Beausang, YE Goldman, and PCN, Meth. Enzymol. 487:431 (2011).
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Payoft

0
i S 7 L R R R — ] Oh, yes--it also works on real experimental data.
| LA R e Pl
] 0 i |. ] ' ] boe F e L | Voot o . .
W2 g W I e s e o Now we can get back to the original motivation.
60k s LA % 8 a0 217l ' 2255 ) 7 2
G R L e « ' o1 1 Previously, people would take data from
e e A multiple polarizations, bin it, and pipe the
T e i LA Aty i’ =i inferred intensities into a maximum-likelihood
WE ke "' '{ estimator of the orientation of the fluorophore.
7458 theta = polar in the lab frame 1 That procedure leads to the rather noisy dots
oF phi = azimuthal in the lab frame !
e -1 shown here.
: ~ One problem is that if a transition happens in the
............ ¢ _ _ _____  middle of a time bin, then the inferred
80 R * : 1] orientation in that time bin can be crazy.
L S ey e =
A A s ey v Ehii
O S e e ey Here the solid lines are the inferred orientations
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JF Beausang, YE Goldman, and PCN, Meth. Enzymol. 487:431 (2011).
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Summary Part |

*kWhen you only get a million photons, you’d better make every photon count.
* A simple maximum-likelihood analysis accomplishes this.

K1In the context of TIRF it can dramatically improve the tradeoff between time
resolution and accuracy.
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Part lll: Parallel recordings from dozens of
individual neurons

* Sometimes suggests a new kind of measurement that tests a model more stringently, or distinguishes two
different models more completely, than previous measurements.

X Sometimes our model is not obviously connected with what we can actually measure experimentally,
and we need to make a connection.

*kSometimes the model that interests us involves the behavior of actors that we can only
see indirectly in our data; theory may be needed to separate them out from each other,
and from noise.
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Part lll: Parallel recordings from dozens of
individual neurons

* Sometimes suggests a new kind of measurement that tests a model mor¢fstringently, or distinguishes two
different models more completely, than previous measurements.

X Sometimes our model is not obviously connected with what we can agtually measure experimentally,
and we need to make a connection.

*kSometimes the model that interests us involves the behavior of actors that we can only
see indirectly in our data; theory may be needed to separate them out from each other,
and from noise.
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Sources of energy

Experiments done in the lab of Vijay Balasubramanian (Penn).

Thursday, March 15,2012



Sources of energy

Experiments done in the lab of Vijay Balasubramanian (Penn).

Jason Prentice, Penn > 4
Physics
Kristy Simmons, Penn Neuroscience
(plus Gasper Tkacik.)

(Many thanks to Michael Berry and Olivier Marre, Princeton;
Bart Borghuis, Janelia Farms; Michael Freed and others at
Penn Retina Lab; Joerg Sander, U Alberta; Ronen Segev, BGU,
Chris Wiggins, Columbia.)

Jan Homann, Penn Physics
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Really big picture

Retina is also an
approachable, yet still
complex, part of the brain.
It’s a 2D carpet consisting
of “only” three layers of
neurons.

== Retina =P

Retinal
illumination
pattern

Retinal
ganglion cell
spike trains
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AN APPROACHABLE PART OF THE BRAIN
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== Retina

Retinal
illumination
pattern

Really big picture

Retina is also an
approachable, yet still
complex, part of the brain.
It’s a 2D carpet consisting
of “only” three layers of
neurons.
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Summary, Part |l

Get data Cluster Fit Interpret




1. Experiment

Get data
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VWhat's In the dish

Michael Berry, Princeton
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SImple events

. 67 ms of data,

0.1 msec

20
a0 20 viewed as a movie.
60 1100 [data have been smoothed]
& 80
= 460
120
40

140

160

180

50 100 150
mrcometer

Classic: Gerstein+Clark 1964; Abeles+Goldstein 1977; Schmidt 1984.
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Some spikes move across the array:
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SImple events

. 67 ms of data,

0.1 msec

20

40 120 viewed as a movie.
= {100 [data have been smoothed]
I go
| = l&0
120 e
140 44
160 20
180 Some spikes move across the array:
S0 100 150
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0.1msec
Mostly we are hearing retinal ganglion cells, as 20 300
desired, because they’re the ones that spike. 40
- 4250
60
5 30 - 4200
:
g 100 4150
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180
Classic: Gerstein+Clark 1964 ; Abeles+Goldstein 1977; Schmidt 1984. 2
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SImple events
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Mostly we are hearing retinal ganglion cells, as
desired, because they’re the ones that spike.

The spike-sorting problem is: Given
raw data like these, convert to a list of
discrete events (which cells fired at
what times).

Classic: Gerstein+Clark 1964; Abeles+Goldstein 1977; Schmidt 1984.
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Not-so-simple events

which electrode, x

Unfortunately many events are
complex, with multiple overlapping
spikes in many locations. And of
course these may be the most
interesting ones!

It really matters because “Failure in
identification of overlapping spikes
from multiple neuron activity causes
artificial correlations” [Bar-Gad ‘01].
Moreover, when we graduate to
bigger arrays, nearly all events will
involve overlaps in time!!

Many authors say bursts are a big
problem, but here is a nice fit that we
obtained with no special effort. See
later.

We even handle overlapping spikes,
which some algorithms do not
attempt. See later.

which electrode, y

-200

-400

-200

-400

-200

-400

-200

—-400

-200

—-400

-200

-400

potential, uV

e bt T it I O 3 e e s o P I O Al et O repingooipmpstoopipigl 0
-2000 60 ms -200 -200 -200 time
_a00] €| 400 —400 —400
1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000
W”WWW O pefrprbetfiopipsigir] O peeipommpneritdipommind () fprmppoopbrimptipianady Q) [enpoptinbosliporis
-200 -200 -200 -200
-400 -400 -400 -400
1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000
ik OWW O [wirapssfmpmomiimamy) O [ vty O frrsesepmstppsemiogscse o
-200 -200| 348:12(28):TM -200 -200
400 _apo| N=25 R=3397(1360) 40 400
1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000
0 www 0 WWW 0 MM»«TWWW O [rethdpasipor it
-200 -200 -200 -200
-400 -400 -400 -400
1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000
p—e ;...va e .wmu 0 WWW 0 WYRMMW O Pty O eyt
-200 -200 -200 -200
-400 -400 -400 -400
1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000
Ww 0 WWWMM 0 WY"'WMW (ol i W A T ) Wwwww
-200 -200 -200 -200
-400 -400 -400 -400

1000 2000 3000

1000 2000 3000

1000 2000 3000

1000 2000 3000

1000 2000 3000

JS Prentice, J Homann, KD Simmons, G Tkacik, V Balasubramanian, PCN, PLoS ONE 6(7): e19884 (2011).
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2. Clustering

Cluster

[Sorry, no time to discuss our method for this step.]
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lypical cluster

Superposing 50 traces
chosen from 284 in this
cluster shows that they
really do all resemble

each Other 50 100 150 50 100 150 50 100 150 50 100 150 50 100

150

Occasional events in
which this event
collides with another

donlt affeCt the 50 100 150 50 100 150 50 100 150 50 100 150 50 100

“archetype

150

waveform” (template)
(next slide).

Although the shape of

each instance of the

archetype is quite
constant, still its
amplitude has
significant variation.

-100 -100 -100 -100 -100

50 100 150 50 100 150 50 100 150 50 100 150 50 100

JS Prentice, J Homann, KD Simmons, G Tkacik, V Balasubramanian, PCN, PLoS ONE 6(7): el9884 (2011).
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We scaled each

instance of each
archetype to get 0
best agreement ~50

with the others,
then took the
median at each time

point to find our Y

best estimate of the -5
consensus —100
waveform (blue).
As a check, the :
pointwise mean
waveform looks the ~°
same (red). 7 e
0

Resulting archetype
waveform
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3. Fitting

Get data Cluster . Interpret
Fit
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Nolise covariance

Vanilla least-squares fitting is not appropriate for time series, because it assumes that
every sample is independent of all others--whereas actually, successive samples are
correlated.

Here is the covariance of channel #13 with all other channels (after an initial spatial
filter, also obtained from data). For reference, each channel has a single blue curve
showing an exponential function.

We see that #13 is correlated
only with itself, and it has a
simple covariance matrix that
is easy to invert. The inverse
covariance thus obtained O w5 w B Mo 5w w5 w w w %
defines our correlated
Gaussian model of the noise.

[Again: The covariance is not a ; \!

delta function, contrary to
What iS assumed ln naive leaSt- % 5 10 15 20 % 5 10 15 20 % 5 10 15 20 % 5 10 15 20 %
squares fitting.]
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On Inference

Suppose we measure some experimental data, and wish to make an inference about some
situation that we cannot directly observe. That is, we imagine a variety of worlds with different
values of X, and ask which is most probable given the observed data.

See M. Denny and S. Gaines, Chance in Biology.

Thursday, March 15,2012



On Inference

Suppose we measure some experimental data, and wish to make an inference about some
situation that we cannot directly observe. That is, we imagine a variety of worlds with different
values of X, and ask which is most probable given the observed data.

If we know the probability that those data would have arisen in a world with a particular value of
X, then Bayes’s formula gives us what we actually want:

P(X)
P(X|ob d data) = P(data|X
(X |observed data) (datal )P(data)
We can ignore the denominator, if all we want is to compare two hypotheses (e.g. maximize

over X).

See M. Denny and S. Gaines, Chance in Biology.

Thursday, March 15,2012



On Inference

Suppose we measure some experimental data, and wish to make an inference about some
situation that we cannot directly observe. That is, we imagine a variety of worlds with different
values of X, and ask which is most probable given the observed data.

If we know the probability that those data would have arisen in a world with a particular value of
X, then Bayes’s formula gives us what we actually want:

B(X)
Pfdata)
to compare two hypotheses (e.g. maximize

P(X|observed data) = P(data|X)

S0k
.

over X).
For our application, we’d like .- P ata), where “data” is an observed waveform and
“spikes” refers to a collecti ' types (41, . . occurring at times ¢, . ..

o*
o*
.
ES

.
.
.
.
.
.
.
.
.
.
.
3
o*
.

See M. Denny and S. Gaines, Chance in Biology.
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Bayesian idea

Previous slide expressed P(spikes | data) as:
K X (likelihood) X (prior) = K P(data | spikes) P(spikes)

Priors co
itself--a

Here “spikes” refers to a collection of spike archetypes {41, ... occurring at times meg‘;‘ 0
{1, ..with amplitudes A1, . .. relative to the amplitude of the corresponding archetype.
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Bayesian idea

Previous slide expressed P(spikes | data) as:
K X (likelihood) X (prior) = K P(data | spikes) P(spikes)

Priors co
itself--a

Here “spikes” refers to a collection of spike archetypes {41, ... occurring at times gs‘ge:;’:‘ 0
{1, ..with amplitudes A1, . .. relative to the amplitude of the corresponding archetype.

To get the prior, P(spikes), assume that for a single spike it has the form
Pcell(lu)Ptime (t)Pampl(A‘,u)

The three factors are respectively the popularity of this neuron, uniform in time, and a
Gaussian reflecting its typical amplitude and amplitude variability. We get these priors
from the data subset used in clustering.
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Bayesian idea

Previous slide expressed P(spikes | data) as:
K X (likelihood) X (prior) = K P(data | spikes) P(spikes)

Priors co
itself--a

Here “spikes” refers to a collection of spike archetypes {41, ... occurring at times meg‘;’; 0
{1, ..with amplitudes A1, . .. relative to the amplitude of the corresponding archetype.

To get the prior, P(spikes), assume that for a single spike it has the form
Pcell(lu)Ptime (t)Pampl(A‘lLL)

The three factors are respectively the popularity of this neuron, uniform in time, and a
Gaussian reflecting its typical amplitude and amplitude variability. We get these priors
from the data subset used in clustering.

To get the likelihood function P(data | spikes), suppose that the data consist of one

archetype, plus noise. And suppose that the noise is some Gaussian, independent of which
spikes fired. We know all about this Gaussian from our measurement of noise covariance.

Then the likelihood is that distribution, evaluated at the difference between the actual
waveform and the idealized one. [Pouzat et. al. 2002]
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Bayesian 1dea, ||

We start with an experimental trace (“data”).
We find its peak (absolute minimum), and start looking for a spike there.

We ask for the likelihood ratio between the hypotheses of no spike versus one
spike of given type, at given time, with given amplitude.

% To compute the likelihood of no spike, evaluate the noise distribution on the
trace.

% To compute the probability of one spike, choose a spike archetype and a
value of t, the spike time. Holding the “data” fixed, the probability is now a
Gaussian function in the remaining parameter A, so it’s fast and easy to
marginalize over A.

Thursday, March 15,2012



'Nuts and Bolts]

LetV,, (t) be measured voltage, electrode vand F,, (¢) be archetype waveform

of type ,u Define the deviation [5V] = (t) — AF Lo (t S tl)

The noise covariance

Then the probability that one spike, of type (4, is present is /

A—~,)7 1
P(spikes | data) = K, exp ( 5 Z“) 2((SV)tC_1(5V)
o
L

which is a Gaussian in A. So it’s easy to marginalize over A: just complete the square!

[Here B — Pt PR () (2n0 ) 2 Joesn’t depend on A.]

JS Prentice, J Homann, KD Simmons, G Tkacik, V Balasubramanian, PCN, PLoS ONE 6(7): e19884 (2011).
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LetV,, (t) be measured voltage, electrode vand F,, (¢) be archetype waveform

of type ,u Define the deviation [(5V] = (t) — AF Lo (t S tl)

The noise covariance

Then the probability that one spike, of type (4, is present is /

A—7v,)° 1
P(spikes | data) = K, exp ( 5 Z“) 2((SV)tC_1(5V)
o
L

which is a Gaussian in A. So it’s easy to marginalize over A: just complete the square!

[Here B — Pt PR () (2n0 ) 2 Joesn’t depend on A.]

Next, we sweep over a range of t to find the best value of likelihood ratio for this
spike type. [We only check t values close to the peak of the event.]

JS Prentice, J Homann, KD Simmons, G Tkacik, V Balasubramanian, PCN, PLoS ONE 6(7): e19884 (2011).
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which is a Gaussian in A. So it’s easy to marginalize over A: just complete the square!

[Here B — Pt PR () (2n0 ) 2 Joesn’t depend on A.]

Next, we sweep over a range of t to find the best value of likelihood ratio for this
spike type. [We only check t values close to the peak of the event.]

Then we choose the winner among spike types.

JS Prentice, J Homann, KD Simmons, G Tkacik, V Balasubramanian, PCN, PLoS ONE 6(7): e19884 (2011).
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'Nuts and Bolts]

LetV,, (t) be measured voltage, electrode vand F,, (¢) be archetype waveform

of type ,u Define the deviation [5V] = (t) — AF Lo (t S tl)

The noise covariance

Then the probability that one spike, of type (4, is present is /
- Ay ) tC—1 _
P(spikes | data) = K, exp 5 : (6V)'C(6V)
o)
B v 2

which is a Gaussian in A. So it’s easy to marginalize over A: just complete the square!

[Here B — Pt PR () (2n0 ) 2 Joesn’t depend on A.]

Next, we sweep over a range of t to find the best value of likelihood ratio for this
spike type. [We only check t values close to the peak of the event.]

Then we choose the winner among spike types.

If the winner’s likelihood ratio is good enough (bigger than about 1), we say there’s a
spike here. That’s the absolute criterion I promised earlier.

JS Prentice, J Homann, KD Simmons, G Tkacik, V Balasubramanian, PCN, PLoS ONE 6(7): e19884 (2011).
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Can we really assume that
the spikes from a particular
cell differ only in overall
amplitude? We took many
events that contained a
single spike of-each type.
Point by point'in time, we
subtracted the scaled shifted
archetype and found the
residual (on each channel).

Green: the archetype itself.
Red: mean deviation from
archetype.

Blue: std deviation from
archetype.

We really do subtract spikes
pretty completely.

lest our assumptions
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Successtully fit overlaps
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Successtully fit overlaps
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Successtully fit overlaps

Top: Closeup of four channels, showing three fit archetypes found by the algorithm.
Bottom: sum of those fits (color) versus actual data (black).
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Interpret
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Fach cell has a receptive field..

... and they tile the whole visual field. MEA recording is high throughput: We got
dozens of cells all at once. Here are cells from just one functional group, “on cells.” Each
putative receptive field is a single connected region of image space.

Region of retina
responded to by
ganglion cell #1, etc.

200 um

KD Simmons, JS Prentice, G Tkacik, J Homann, PCN, V Balasubramanian, submitted.
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Receptive fields

Once you’'ve got the spike trains, you can find receptive fields etc. Here’s a
typical spike-triggered average.

How interesting--guinea pig retina has a lot of these highly anisotropic
receptive fields. The “surround” doesn’t surround the “center”!
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Receptive fields

Once you’'ve got the spike trains, you can find receptive fields etc. Here’s a
typical spike-triggered average.

How interesting--guinea pig retina has a lot of these highly anisotropic
receptive fields. The “surround” doesn’t surround the “center”!
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lakehome Part |l

==J Retina =P

.Retinél ; Retinal
illumination :

ganglion cell
pattern

spike trains

I described how we identify the individual ganglion cell signals from a hash of noise and
overlapping real signals:
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lakehome Part |l

==J Retina =P

Retinal
illumination
pattern

Retinal
ganglion cell
spike trains

I described how we identify the individual ganglion cell signals from a hash of noise and
overlapping real signals:

Get data Cluster Fit Interpret
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Changepoint
Analysis

Full circle

Medical
tests

Poisson processes

OK, | was a
scatterbrain and
gave you three
talks. But wait
—— if I can fill in
the spaces

Multi-
Electrode
Array

Thursday, March 15,2012



' OK, | was g
Full circle scaterbrain anc

talks. But wait

——if I can fill in
the spaces
Medical ——
tests
Bayes
formula
| Multi-
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' OK, | was g
Full circle scaterbrain anc

talks. But wait

——if I can fill in
the spaces
Medical
tests
Bayes
formula
| Multi-
Changepoint Electrode
Analysis Poisson processes Array

Theory can cut across apparently different kinds of experiment, offering useful
methods to one domain from another without having to reinvent everything.
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Walt, there's more

Changepoint
Analysis

Bayes
formula

Poisson processes

Multi-
Electrode
Array
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Walt, there's more

Changepoint
Analysis

Bayes
formula

Poisson processes

A physical model --
localized spreading of
potential changes in
solution -- helped us to
extract what was going on.

Multi-
Electrode
Array
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A physical model -- photon
theory -- helped us to extract
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Multi-
Electrode
Array

Thursday, March 15,2012



Walt, there's more

A physical model -- photon
theory -- helped us to extract
what was going on.

Changepoint
Analysis

Bayes
formula

Poisson processes

A physical model --
localized spreading of
potential changes in
solution -- helped us to
extract what was going on.

Multi-
Electrode
Array

There is something weirdly -- unreasonably -- effective about approaching biological systems
with a physical model. I don’t understand why. I don’t need to understand why:.
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Go long

along the lines of, ‘clean up the bibliography”
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Go long

Often, when we want to justify theory, we scratch our heads and say, “Well Hodgkin
and Huxley was a big deal.”

along the lines of, ‘clean up the bibliography”
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Go long

Often, when we want to justify theory, we scratch our heads and say, “Well Hodgkin
and Huxley was a big deal.”

Indeed. But that sort of cherry-picking approach can leave the impression that
theory is something that happens every 50 years or so. It’s also too reverent.

along the lines of, ‘clean up the bibliography”
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Often, when we want to justify theory, we scratch our heads and say, “Well Hodgkin
and Huxley was a big deal.”

Indeed. But that sort of cherry-picking approach can leave the impression that
theory is something that happens every 50 years or so. It’s also too reverent.

My point so far is that theory is needed every day. It's our microscope; our Geiger
counter; it helps us to see the invisible.
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Go long

Often, when we want to justify theory, we scratch our heads and say, “Well Hodgkin
and Huxley was a big deal.”

Indeed. But that sort of cherry-picking approach can leave the impression that
theory is something that happens every 50 years or so. It’s also too reverent.

My point so far is that theory is needed every day. It's our microscope; our Geiger
counter; it helps us to see the invisible.

To emphasize that, I didn’t select famous examples; instead I have told you about the
two things I happen to be working on right now (a random choice, you'll agree).

along the lines of, ‘clean up the bibliography”
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Go long

Often, when we want to justify theory, we scratch our heads and say, “Well Hodgkin
and Huxley was a big deal.”

Indeed. But that sort of cherry-picking approach can leave the impression that
theory is something that happens every 50 years or so. It’s also too reverent.

My point so far is that theory is needed every day. It's our microscope; our Geiger
counter; it helps us to see the invisible.

To emphasize that, I didn’t select famous examples; instead I have told you about the
two things I happen to be working on right now (a random choice, you'll agree).
Another context in which theory enters laboratory discussions is, “W B
theory to get this thing published. Go do some theory, run some ANOVA,
whatever.”
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Often, when we want to justify theory, we scratch our heads and say, “Well Hodgkin
and Huxley was a big deal.”

Indeed. But that sort of cherry-picking approach can leave the impression that
theory is something that happens every 50 years or so. It’s also too reverent.

My point so far is that theory is needed every day. It's our microscope; our Geiger
counter; it helps us to see the invisible.

To emphasize that, I didn’t select famous examples; instead I have told you about the
two things I happen to be working on right now (a random choice, you'll agree).
Another context in which theory enters laboratory discussions is, “W B
theory to get this thing published. Go do some theory, run some ANOVA,
whatever.”

I'd just like to suggest that this attitude, though common, misses out on some of

what theory can do for you. Particularly, a physical model can give a lot of
dividends.
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Go long

Often, when we want to justify theory, we scratch our heads and say, “Well Hodgkin
and Huxley was a big deal.”

Indeed. But that sort of cherry-picking approach can leave the impression that
theory is something that happens every 50 years or so. It’s also too reverent.

My point so far is that theory is needed every day. It's our microscope; our Geiger
counter; it helps us to see the invisible.

To emphasize that, I didn’t select famous examples; instead I have told you about the
two things I happen to be working on right now (a random choice, you'll agree).
Another context in which theory enters laboratory discussions is, “W B
theory to get this thing published. Go do some theory, run some ANOVA,
whatever.”

I'd just like to suggest that this attitude, though common, misses out on some of

what theory can do for you. Particularly, a physical model can give a lot of
dividends.

We like to teach famous success stories in science, but we don’t always remember to
present them as showcases of the utility of physical modeling.
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