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For these slides see: 
www.physics.upenn.edu/~pcn

When you see a title like that, you need to worry: “Uh-oh, sounds philosophical.”
Well, I just wanted to tell you two concrete stories about cases when my colleagues and I managed to 
do something useful by virtue of knowing something about inference. The ideas we needed were 
things I didn’t know a few years ago, so I thought you might be interested too.
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Focus
we need to make sure we don’t forget to tell our undergraduates why theory exists. (Are 
there any students here today?) Remember, to them “theory” is a strongly negative word. 
(“How’s it going in Physics N? Too much theory.”) To them it means “stuff that won’t get me 
a job because it’s not relevant to anything practical.” To them it’s at best decorative, like 
music or art. If we think there’s more to it than that, we’d better not forget to tell them 

“Of course that’s what we do -- everybody knows that.” -- No. 
They don’t.

“If your experiment requires statistics, then you ought to have done a
 better experiment.” -- Ernest Rutherford
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Part I: 

start with a topic that may not be obviously biophysical in character.
Suppose I stood here and said “all men are mortal; Socrates is mortal; therefore Socrates is a man”
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Part I: 

men

mortal

start with a topic that may not be obviously biophysical in character.
Suppose I stood here and said “all men are mortal; Socrates is mortal; therefore Socrates is a man”

*
In classical logic it’s fairly easy to spot errors of inference.
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G. Gigerenzer, Calculated risks

An everyday question in clinical practice
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G. Gigerenzer, Calculated risks

An everyday question in clinical practice

Here are the replies of 24 practicing 
physicians, who had an average of 14 
years of professional experience:

Frequency
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Work it out
We are asked for P(sick|+) = B/(B+D).

A=Sick, –

B=Sick, +

C=Healthy, –

D=Healthy, +
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Work it out
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But what we were given was P(+|sick) = B/(A+B).
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denominators. To get one from the other we need some 
more information:

B
B+D = B

A+B × A+B
B+D

P (sick|+) = P (+|sick)× P (sick)

P (+)

Posterior 
estimate
(desired)

Prior
estimate
(given)

Likelihood
(given)

Still need this

A=Sick, –

B=Sick, +

C=Healthy, –

D=Healthy, +
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Finish working it out

A=Sick, –
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P (+)

Is that last factor a big deal?
P(sick) was given, but we need:
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A=Sick, –

B=Sick, +

C=Healthy, –

D=Healthy, +

P (sick|+) = P (+|sick)× P (sick)

P (+)

Is that last factor a big deal?
P(sick) was given, but we need:
P (+) = B +D

=
B

A+B
(A+B) +

D

C +D
(C +D)

= P (+|sick)P (sick) + P (+|healthy)P (healthy)

= (0.5)(0.003) + (0.03)(0.997) ≈ 0.03
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Finish working it out

A=Sick, –

B=Sick, +

C=Healthy, –

D=Healthy, +

P (sick|+) = P (+|sick)× P (sick)

P (+)

Is that last factor a big deal?
P(sick) was given, but we need:
P (+) = B +D

=
B

A+B
(A+B) +

D

C +D
(C +D)

= P (+|sick)P (sick) + P (+|healthy)P (healthy)

= (0.5)(0.003) + (0.03)(0.997) ≈ 0.03

P (sick)

P (+)
≈ 0.003

0.03
≈ 0.1

It’s huge: a positive test result means
only a 5% chance you’re sick. Not 97%.
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Many thanks to Haw Yang. See also Lucas P. Watkins 
and Haw Yang J. Phys. Chem. B 2005

Part II: Changepoint analysis in single-
molecule TIRF

JF Beausang, Yale Goldman, PN

✴Sometimes our model is not obviously connected with what we can actually measure experimentally, 
but and we need to makes a connection.

✴Sometimes the model that interests us involves the behavior of actors that we can only see indirectly in our 
data; theory may be needed to separate them out from each other, and from noise.
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Myosin V Processivity
We’d like to know things like: How does it walk? What are the steps in the kinetic 
pathway? What is the geometry of each state?
One classic approach is to monitor the position in space of a marker (e.g. a bead) attached 
to the motor. But this does not address the geometry of each state.
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Myosin V Processivity
We’d like to know things like: How does it walk? What are the steps in the kinetic 
pathway? What is the geometry of each state?
One classic approach is to monitor the position in space of a marker (e.g. a bead) attached 
to the motor. But this does not address the geometry of each state.

The approach I’ll discuss involves attaching a 
bifunctional fluorescent label to one lever arm. The 
label has a dipole moment whose orientation in 
space reflects that of the arm.
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Myosin V Processivity

θ1
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Myosin V Processivity

θ2
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Myosin V Processivity

θ3
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Myosin V Processivity

θ4
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Fluorescence illumination by the evanescent wave eliminates a lot of noise, and 
importantly, maintains the polarization of the incident light.
To tickle the fluorophore with every possible polarization, we need the incoming light 
to have at least two different beam directions.

Polarized total internal reflection 
fluorescence microscopy

Quartz
Slide

Aqueous
Medium

Microscope
Objective

Fluorescent
Emission

Evanescent
Field

Excitation
Laser BeamGlass  Prism
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pol-TIRF setup

Thursday, March 15, 2012



pol-TIRF setup

8 polarized illuminations x 2 detectors = 16 fluorescent intensities per cycle

Thursday, March 15, 2012



JN Forkey et al. Nature 2003

Current state of the art

It’s a bit more meaningful to convert from lab-frame angles θ,φ to actin-frame angles α,β. Even 
then, however, state of the art calculations give pretty noisy determinations, with pretty poor 
time resolution. 
You could easily miss a short-lived state -- e.g. the elusive diffusive-search step (if it exists). 
Can’t we do better?
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Unfortunately, the total photon counts from a 
fluorescent probe may not be very informative. 
Here we divided a time period of interest into 20 
bins. There is some Poisson noise in the photon 
counts, of course.
( [ATP]=10uM )

Time (a.u.)

ph
ot

on
 co

un
t

Horizontal axis is 
time. Vertical axis 
is binned photon 
count, PFI =polarized 
fluorescence intensity 

JF Beausang, YE Goldman, and PCN, Meth. Enzymol. 487:431 (2011).
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If we choose wider bins, we’ll get worse time resolution; if 
we choose narrower bins, we’ll get worse shot-noise errors.
Can we evade the cruel logic of photon statistics?

sequence number

Ti
m

e 
(a

.u
.)

It turns out that binning the data destroyed some 
information. Something magical happens if instead of 
binning, we just we plot photon arrival time versus photon 
sequence number. Despite some ripples from Poisson 
statistics, it’s obvious that each trace has a sharp 
changepoint, and moreover that the two changepoints 
found independently in this way are simultaneous. 
(A similar approach in the context of FRET was pioneered 
by Haw Yang.)

Horizontal axis is 
time. Vertical axis 
is binned photon 
count, PFI =polarized 
fluorescence intensity 

JF Beausang, YE Goldman, and PCN, Meth. Enzymol. 487:431 (2011).
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Now that I have your attention
•Why did that trick work? How did we get such great time resolution from such cruddy data?

•How well does it work? If we have even fewer photons, for example because a state is short-
lived, how can we quantify our confidence that any changepoint occurred at all?

• Could we generalize and automate this trick? Ultimately we’ll want to handle data with multiple 
polarizations, and find lots of changepoints.
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Now: Divide the N photons into n that arrived before the putative changepoint, and n’=N-n that 
arrived after.
Take the limit                   : ∆t→ 0

log P (t1, . . . , tN |R,R�, t∗) =
t∗/∆t�

k=1

log

�
R ∆t if a photon in this slice
(1−R ∆t) otherwise

From previous slide: In total time T we catch N photons at times t1,... tN.
Hypothesis is that photons are arriving in a Poisson process with rate R from time 0 to time t* , and 
thereafter arrive in another Poisson process with rate R’.

+
T/∆t�

k�=t∗/∆t+1

log

�
R� ∆t if a photon in this slice
(1−R� ∆t) otherwise
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Now: Divide the N photons into n that arrived before the putative changepoint, and n’=N-n that 
arrived after.
Take the limit                   : ∆t→ 0

log P (t1, . . . , tN |R,R�, t∗) =
t∗/∆t�

k=1

log

�
R ∆t if a photon in this slice
(1−R ∆t) otherwise

From previous slide: In total time T we catch N photons at times t1,... tN.
Hypothesis is that photons are arriving in a Poisson process with rate R from time 0 to time t* , and 
thereafter arrive in another Poisson process with rate R’.

+
T/∆t�

k�=t∗/∆t+1

log

�
R� ∆t if a photon in this slice
(1−R� ∆t) otherwise

P ≈ N log(∆t) + n logR+ n� logR� −
� t∗
∆t

− n
��

R∆t
�
−

�T − t∗
∆T

− 1− (N − n)
��

R�∆t
�

≈ const + n logR+ n� logR� −Rt∗ −R�(T − t∗)
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R = n/t∗ , R� = n�/(T − t∗)

OK, duh, that was no surprise! But it does explain why we can just lay a ruler along the cumulative 
plot to get our best estimate of the before and after rates. 
More interestingly, we can substitute these optimal rates into the formula for P to find the 
likelihood as a function of putative changepoint:
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Here’s some very fake data; the photons arrive 
uniformly, not at random.
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Here’s some very fake data; the photons arrive 
uniformly, not at random.

Here are two lines corresponding to 
non-optimal choices of the 
changepoint. We’d like to see the 
likelihood function and how it 
selects the “right” changepoint, 
which for fake data is known.
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Here’s some very fake data; the photons arrive 
uniformly, not at random.

Here are two lines corresponding to 
non-optimal choices of the 
changepoint. We’d like to see the 
likelihood function and how it 
selects the “right” changepoint, 
which for fake data is known.

Application

Here is our log-likelihood 
function as a function of 
putative changepoint time.
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Left: Some more realistic (Poisson-arrival) simulated data, 
shown in traditional binned form and in the improved 
version.

Right: Likelihood function for placement of the 
changepoint. Dashed line, maximum-likelihood point. 
Black triangle: Actual changepoint used in the simulation.
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Oh, yes -- the method also works on multiple-channel data. Left: one 
channel (red) starts with rare photons, then jumps to higher intensity. 
Another channel (blue) does the opposite. The sum of the intensities 
(black) doesn’t change much at all.
Middle: “kink” representations of the same data. Right: both channels 
contribute to a likelihood function with a robust peak, even though there 
were only a total of just 200 photons in the entire dataset.

JF Beausang, YE Goldman, and PCN, Meth. Enzymol. 487:431 (2011).
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JF Beausang, YE Goldman, and PCN, Meth. Enzymol. 487:431 (2011).

Payoff

theta = polar in the lab frame
phi = azimuthal in the lab frame
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JF Beausang, YE Goldman, and PCN, Meth. Enzymol. 487:431 (2011).

Payoff

theta = polar in the lab frame
phi = azimuthal in the lab frame

Oh, yes--it also works on real experimental data.

Now we can get back to the original motivation. 
Previously, people would take data from 
multiple polarizations, bin it, and pipe the 
inferred intensities into a maximum-likelihood 
estimator of the orientation of the fluorophore. 
That procedure leads to the rather noisy dots 
shown here. 
One problem is that if a transition happens in the 
middle of a time bin, then the inferred 
orientation in that time bin can be crazy.

Here the solid lines are the inferred orientations 
of the probe molecule during successive states 
defined by changepoint analysis. We see a nice 
alternating stride in φ.
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Summary Part II

✴When you only get a million photons, you’d better make every photon count.

✴A simple maximum-likelihood analysis accomplishes this.

✴In the context of TIRF it can dramatically improve the tradeoff between time 
resolution and accuracy.
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Part III: Parallel recordings from dozens of 
individual neurons

✴Sometimes suggests a new kind of measurement that tests a model more stringently, or distinguishes two 
different models more completely, than previous measurements.

✴Sometimes our model is not obviously connected with what we can actually measure experimentally, 
and we need to make a connection.

✴Sometimes the model that interests us involves the behavior of actors that we can only 
see indirectly in our data; theory may be needed to separate them out from each other, 
and from noise.
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Sources of energy
Experiments done in the lab of Vijay Balasubramanian (Penn).
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Jason Prentice, Penn 
Physics

Kristy Simmons, Penn Neuroscience

Jan Homann, Penn Physics

(plus Gasper Tkacik.)
(Many thanks to Michael Berry and Olivier Marre, Princeton; 
Bart Borghuis, Janelia Farms; Michael Freed and others at 
Penn Retina Lab; Joerg Sander, U Alberta; Ronen Segev, BGU, 
Chris Wiggins, Columbia.)

Sources of energy
Experiments done in the lab of Vijay Balasubramanian (Penn).
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Really big picture
Retina is also an 
approachable, yet still 
complex, part of the brain. 
It’s a 2D carpet consisting 
of “only” three layers of 
neurons.

Optics Retina Brain Behavior
Visual 
scene in

Retinal 
ganglion cell 
spike trains

Retinal 
illumination 
pattern
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It matters
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It matters
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Summary, Part III

Get data Cluster Fit Interpret
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1. Experiment
2. Clustering
3. Fitting
4. Performance

Get data Cluster Fit Interpret
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HardwareCf Meister, Pine, and Baylor 1994.
Incredibly, one can keep a 
mammalian retina alive in a dish 
for over 6 hours while presenting it 
stimuli and recording its activity.

Thursday, March 15, 2012



HardwareCf Meister, Pine, and Baylor 1994.
Incredibly, one can keep a 
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for over 6 hours while presenting it 
stimuli and recording its activity.
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 What’s in the dish

Michael Berry, Princeton
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67 ms of data, 
viewed as a movie.
[data have been smoothed]

Simple events

Classic: Gerstein+Clark 1964; Abeles+Goldstein 1977; Schmidt 1984.
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viewed as a movie.
[data have been smoothed]

Some spikes move across the array:

Simple events

Classic: Gerstein+Clark 1964; Abeles+Goldstein 1977; Schmidt 1984.
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67 ms of data, 
viewed as a movie.
[data have been smoothed]

Some spikes move across the array:

Simple events

Classic: Gerstein+Clark 1964; Abeles+Goldstein 1977; Schmidt 1984.

Mostly we are hearing retinal ganglion cells, as 
desired, because they’re the ones that spike.
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67 ms of data, 
viewed as a movie.
[data have been smoothed]

Some spikes move across the array:

Simple events

The spike-sorting problem is: Given 
raw data like these, convert to a list of 
discrete events (which cells fired at 
what times).

Classic: Gerstein+Clark 1964; Abeles+Goldstein 1977; Schmidt 1984.

Mostly we are hearing retinal ganglion cells, as 
desired, because they’re the ones that spike.
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Not-so-simple events
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N=25 R=3397(1360)
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Unfortunately many events are 
complex, with multiple overlapping 
spikes in many locations. And of 
course these may be the most 
interesting ones!

It really matters because “Failure in 
identification of overlapping spikes 
from multiple neuron activity causes 
artificial correlations” [Bar-Gad ‘01].
Moreover, when we graduate to 
bigger arrays, nearly all events will 
involve overlaps in time!!

Many authors say bursts are a big 
problem, but here is a nice fit that we 
obtained with no special effort. See 
later.

We even handle overlapping spikes, 
which some algorithms do not 
attempt. See later.

JS Prentice,  J Homann, KD Simmons, G Tkacik, V Balasubramanian, PCN,  PLoS ONE 6(7): e19884 (2011).
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1. Experiment
2. Clustering
3. Fitting
4. Performance

Get data Cluster Fit Interpret

[Sorry, no time to discuss our method for this step.]
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Typical cluster
Superposing 50 traces 
chosen from 284 in this 
cluster shows that they 
really do all resemble 
each other.

Occasional events in 
which this event 
collides with another 
don’t affect the 
“archetype 
waveform” (template) 
(next slide).

Although the shape of 
each instance of the 
archetype is quite 
constant, still its 
amplitude has 
significant variation.

JS Prentice,  J Homann, KD Simmons, G Tkacik, V Balasubramanian, PCN,  PLoS ONE 6(7): e19884 (2011).
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We scaled each 
instance of each 
archetype to get 
best agreement 
with the others, 
then took the 
median at each time 
point to find our 
best estimate of the 
consensus 
waveform (blue). 
As a check, the 
pointwise mean 
waveform looks the 
same (red).

Resulting archetype 
waveform

3 ms
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1. Experiment
2. Clustering
3. Fitting
4. Performance

Get data Cluster Fit Interpret
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Noise covariance
Vanilla least-squares fitting is not appropriate for time series, because it assumes that 
every sample is independent of all others--whereas actually, successive samples are 
correlated.
Here is the covariance of channel #13 with all other channels (after an initial spatial 
filter, also obtained from data). For reference, each channel has a single blue curve 
showing an exponential function.

Nelson notes III: Fitting 7

approximation to the data, i.e. the one that reproduces the observed mean and covariance. To

interpret Eqn. 3, we say that the e-vectors of C−1 with small e-values are “noiselike” features

in data, and hence not so useful for discriminating features; those with large e-values are “un-

noiselike” and, when present, imply a feature that is not noise. That is, we have learned how

to weight features in the data properly.

One might hope that C would be very simple, and in particular diagonal in the channel

numbers, because we already decorrelated channels. And that’s approximately correct. We also

expect that C will be time translation invariant: Cαt1;βt2 = S(|t1−t2|)δαβ . That’s approximately

correct too. Best world would be if S(δt) = ηe−δt/τcorr . That’s also approximately correct, with

η = 48µV2 and τcorr = 0.2ms (2 samples). To see these things, here are graphs of C13,t1;β,(t1+δt)

as functions of δt (measured in steps of 0.1ms). Each panel is a different channel β. Each trace

is a different t1.
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13

In each panel I also drew the exponential function (48µV2)e−δt/τcorr . We see that: All traces

in a given panel are similar (time-translation invariance). All traces are roughly zero except

panel 13 (diagonal in channel number).13 The traces in panel #13 display exponential falloff.

Other choices of channel α are similar (not shown).

Such a correlation matrix has a simple inverse. Let x = e−0.1ms/τcorr = e−1/2. Then

(dropping δαβ and assuming infinite time)

C−1
ideal(t1, t2) = η−1 ×











(1 + x2)/(1 − x2) , if t1 = t2
−x/(1 − x2) , if t1 = t2 ± 1

0 , if otherwise

(4)

How unsurprising: To account for temporal correlations, we must apply a sharpening filter.

Normally we are warned “Don’t sharpen noisy data! It accentuates the noise.” But here we

13 Channel #9 is weird because it’s dead; its nonzero values came from the (imperfect) whitening step.

We see that #13 is correlated 
only with itself, and it has a 
simple covariance matrix that 
is easy to invert. The inverse 
covariance thus obtained 
defines our correlated 
Gaussian model of the noise.

[Again: The covariance is not a 
delta function, contrary to 
what is assumed in naive least-
squares fitting.]
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Suppose we measure some experimental data, and wish to make an inference about some 
situation that we cannot directly observe. That is, we imagine a variety of worlds with different 
values of X, and ask which is most probable given the observed data.

On inference

See M. Denny and S. Gaines, Chance in Biology.
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Suppose we measure some experimental data, and wish to make an inference about some 
situation that we cannot directly observe. That is, we imagine a variety of worlds with different 
values of X, and ask which is most probable given the observed data.

On inference

P (X|observed data) = P (data|X)
P (X)

P (data)
We can ignore the denominator, if all we want is to compare two hypotheses (e.g. maximize 
over X).

If we know the probability that those data would have arisen in a world with a particular value of 
X, then Bayes’s formula gives us what we actually want:

See M. Denny and S. Gaines, Chance in Biology.
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On inference

P (X|observed data) = P (data|X)
P (X)

P (data)
We can ignore the denominator, if all we want is to compare two hypotheses (e.g. maximize 
over X).

If we know the probability that those data would have arisen in a world with a particular value of 
X, then Bayes’s formula gives us what we actually want:

See M. Denny and S. Gaines, Chance in Biology.

For our application, we’d like    P(spikes | data), where “data” is an observed waveform and 
“spikes” refers to a collection of spike archetypes             occurring at times
with amplitudes              relative to the amplitude of the corresponding archetype (neuron). 
Bayes’s formula gives what we want as

µ1, . . . t1, . . .
A1, . . .

K × (likelihood) × (prior) = KP (data | spikes)P (spikes) 
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t1, . . . A1, . . .
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To get the prior, P(spikes), assume that for a single spike it has the form

The three factors are respectively the popularity of this neuron, uniform in time, and a 
Gaussian reflecting its typical amplitude and amplitude variability. We get these priors 
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Here “spikes” refers to a collection of spike archetypes                occurring at times
           with amplitudes                relative to the amplitude of the corresponding archetype.

Bayesian idea
Previous slide expressed  P(spikes | data) as:

K × (likelihood) × (prior) = K P(data | spikes) P(spikes) 

To get the prior, P(spikes), assume that for a single spike it has the form

The three factors are respectively the popularity of this neuron, uniform in time, and a 
Gaussian reflecting its typical amplitude and amplitude variability. We get these priors 
from the data subset used in clustering.

P cell(µ)P time(t)P ampl(A|µ)

Priors come from data 
itself--an unexpected 
benefit of 2-step analysis-- 
and can be ctsly updatedµ1, . . .

t1, . . . A1, . . .

To get the likelihood function P(data | spikes), suppose that the data consist of one
archetype, plus noise. And suppose that the noise is some Gaussian, independent of which 
spikes fired. We know all about this Gaussian from our measurement of noise covariance.

Then the likelihood is that distribution, evaluated at the difference between the actual 
waveform and the idealized one. [Pouzat et. al. 2002]
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Bayesian idea, II
We start with an experimental trace (“data”).
We find its peak (absolute minimum), and start looking for a spike there.

We ask for the likelihood ratio between the hypotheses of no spike versus one 
spike of given type, at given time, with given amplitude.

★To compute the likelihood of no spike, evaluate the noise distribution on the 
trace.

★To compute the probability of one spike, choose a spike archetype and a 
value of t, the spike time. Holding the “data” fixed, the probability is now a 
Gaussian function in the remaining parameter A, so it’s fast and easy to 
marginalize over A.
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Nelson notes III: Fitting 11

space, because C−1 is also slightly nonlocal in space. Again the key is “slightly.” Off diagonal

elements are small.

VI.C.2. Optimizing over amplitude

Suppose that we can also approximate the prior P ampl(A;µ) as a Gaussian.19 The advantage

of this assumption, combined with assumption (1), is that we can now optimize over amplitude

analytically (i.e. fast).

Thus

log P ampl(A;µ) = −1
2 log(2πσ2

µ) − (A−γµ)2

2σ2
µ

We estimate γµ and σµ from data by computing the mean and variance of the amplitudes of

each of the exemplars contributing to cluster µ.

Let’s use a uniform prior20 for P time and see how the 1-spike log-probability function depends

on amplitude, for fixed time shift t1 and cell type µ. Let $V (t) be the observed waveform and
$Fµ(t) a template.21 Recall that the boldface vectors above combine channel and time indices.

Thus

[δV]αt = Vα(t) − AFµα(t − t1)

Eqn. 2 now becomes22

logP1(µ,A, t1) = log Kµ − (A−γµ)2

2σ2
µ

− 1
2(δV)tC−1(δV) (7)

Here Kµ = P cell(µ)P time(t1)
(

2πσ2
µ

)

−1/2
. (We dropped some factors independent of µ.)

This quantity is maximal at A∗, where

0 = −A∗−γµ

σ2
µ

+
∑

α,t,β,t′

Fµα(t − t1)C
−1
α,t;β,t′(Vβ(t′) − A∗Fµβ(t′ − t1)) (8)

This equation is linear in A and hence trivial to solve. Define the adjoint

Gµβ(τ) =
∑

α,t̂

Fµα(t̂ )Sα,β(τ − t̂ )

Then let

‖Fµ‖
2 =

∑

β,t′′

Gµβ(t′′)Fµβ(t′′)

19 cmultifit.m checks post hoc if this is true, and updates the means and variances based on the fit it found. I’ll
also assume that these are all independent Gaussians for each µ; this too could be checked by cmultifit.m,
but hasn’t been yet. Gaussianity is thought by some to be a bad approximation [Shoham03], but on closer
inspection I see they’re just referring to amplitude changes during a burst [Fee et al].

20 It would not be hard to replace this by a no-refractory-violations prior, if we upgrade the analysis of collisions
to a Lewicki94 approach: Just before the final choice between competing spike train interpretations, clobber
the ones with violations.

21 Units: !F and !V have units µV. A is dimensionless.
22 Paninski’s lecture notes 2007, eqn. 3, is essentially the same but is used in a very different framework.

which is a Gaussian in A. So it’s easy to marginalize over A: just complete the square!   
[Here                                                              doesn’t depend on A.]
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of type    . Define the deviation

Then the probability that one spike, of type    ,  is present is
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Let          be measured voltage, electrode     and             be archetype waveform Vα(t) α Fµα(t)
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P (spikes | data) = Kµ exp
�
− (A− γµ)2

2σ2
µ

− 1
2
(δV)tC−1(δV)

�
The noise covariance

JS Prentice,  J Homann, KD Simmons, G Tkacik, V Balasubramanian, PCN,  PLoS ONE 6(7): e19884 (2011).
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[Nuts and Bolts]

Next, we sweep over a range of t to find the best value of likelihood ratio for this 
spike type. [We only check t values close to the peak of the event.]
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21 Units: !F and !V have units µV. A is dimensionless.
22 Paninski’s lecture notes 2007, eqn. 3, is essentially the same but is used in a very different framework.

which is a Gaussian in A. So it’s easy to marginalize over A: just complete the square!   
[Here                                                              doesn’t depend on A.]

Nelson notes III: Fitting 11

space, because C−1 is also slightly nonlocal in space. Again the key is “slightly.” Off diagonal

elements are small.

VI.C.2. Optimizing over amplitude

Suppose that we can also approximate the prior P ampl(A;µ) as a Gaussian.19 The advantage

of this assumption, combined with assumption (1), is that we can now optimize over amplitude

analytically (i.e. fast).

Thus

log P ampl(A;µ) = −1
2 log(2πσ2

µ) − (A−γµ)2

2σ2
µ

We estimate γµ and σµ from data by computing the mean and variance of the amplitudes of

each of the exemplars contributing to cluster µ.

Let’s use a uniform prior20 for P time and see how the 1-spike log-probability function depends

on amplitude, for fixed time shift t1 and cell type µ. Let $V (t) be the observed waveform and
$Fµ(t) a template.21 Recall that the boldface vectors above combine channel and time indices.

Thus

[δV]αt = Vα(t) − AFµα(t − t1)

Eqn. 2 now becomes22

logP1(µ,A, t1) = log Kµ − (A−γµ)2

2σ2
µ

− 1
2(δV)tC−1(δV) (7)

Here Kµ = P cell(µ)P time(t1)
(

2πσ2
µ

)

−1/2
. (We dropped some factors independent of µ.)

This quantity is maximal at A∗, where

0 = −A∗−γµ

σ2
µ

+
∑

α,t,β,t′

Fµα(t − t1)C
−1
α,t;β,t′(Vβ(t′) − A∗Fµβ(t′ − t1)) (8)

This equation is linear in A and hence trivial to solve. Define the adjoint

Gµβ(τ) =
∑

α,t̂

Fµα(t̂ )Sα,β(τ − t̂ )

Then let

‖Fµ‖
2 =

∑

β,t′′

Gµβ(t′′)Fµβ(t′′)

19 cmultifit.m checks post hoc if this is true, and updates the means and variances based on the fit it found. I’ll
also assume that these are all independent Gaussians for each µ; this too could be checked by cmultifit.m,
but hasn’t been yet. Gaussianity is thought by some to be a bad approximation [Shoham03], but on closer
inspection I see they’re just referring to amplitude changes during a burst [Fee et al].

20 It would not be hard to replace this by a no-refractory-violations prior, if we upgrade the analysis of collisions
to a Lewicki94 approach: Just before the final choice between competing spike train interpretations, clobber
the ones with violations.

21 Units: !F and !V have units µV. A is dimensionless.
22 Paninski’s lecture notes 2007, eqn. 3, is essentially the same but is used in a very different framework.

of type    . Define the deviation

Then the probability that one spike, of type    ,  is present is
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Next, we sweep over a range of t to find the best value of likelihood ratio for this 
spike type. [We only check t values close to the peak of the event.]

Then we choose the winner among spike types.
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Suppose that we can also approximate the prior P ampl(A;µ) as a Gaussian.19 The advantage

of this assumption, combined with assumption (1), is that we can now optimize over amplitude

analytically (i.e. fast).

Thus

log P ampl(A;µ) = −1
2 log(2πσ2

µ) − (A−γµ)2

2σ2
µ

We estimate γµ and σµ from data by computing the mean and variance of the amplitudes of

each of the exemplars contributing to cluster µ.

Let’s use a uniform prior20 for P time and see how the 1-spike log-probability function depends

on amplitude, for fixed time shift t1 and cell type µ. Let $V (t) be the observed waveform and
$Fµ(t) a template.21 Recall that the boldface vectors above combine channel and time indices.

Thus

[δV]αt = Vα(t) − AFµα(t − t1)

Eqn. 2 now becomes22
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2σ2
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2(δV)tC−1(δV) (7)

Here Kµ = P cell(µ)P time(t1)
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−1/2
. (We dropped some factors independent of µ.)

This quantity is maximal at A∗, where

0 = −A∗−γµ

σ2
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+
∑

α,t,β,t′
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2 =

∑
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19 cmultifit.m checks post hoc if this is true, and updates the means and variances based on the fit it found. I’ll
also assume that these are all independent Gaussians for each µ; this too could be checked by cmultifit.m,
but hasn’t been yet. Gaussianity is thought by some to be a bad approximation [Shoham03], but on closer
inspection I see they’re just referring to amplitude changes during a burst [Fee et al].

20 It would not be hard to replace this by a no-refractory-violations prior, if we upgrade the analysis of collisions
to a Lewicki94 approach: Just before the final choice between competing spike train interpretations, clobber
the ones with violations.

21 Units: !F and !V have units µV. A is dimensionless.
22 Paninski’s lecture notes 2007, eqn. 3, is essentially the same but is used in a very different framework.

which is a Gaussian in A. So it’s easy to marginalize over A: just complete the square!   
[Here                                                              doesn’t depend on A.]
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of type    . Define the deviation

Then the probability that one spike, of type    ,  is present is

Nelson notes III: Fitting 11

space, because C−1 is also slightly nonlocal in space. Again the key is “slightly.” Off diagonal

elements are small.

VI.C.2. Optimizing over amplitude

Suppose that we can also approximate the prior P ampl(A;µ) as a Gaussian.19 The advantage

of this assumption, combined with assumption (1), is that we can now optimize over amplitude

analytically (i.e. fast).

Thus

log P ampl(A;µ) = −1
2 log(2πσ2

µ) − (A−γµ)2

2σ2
µ

We estimate γµ and σµ from data by computing the mean and variance of the amplitudes of

each of the exemplars contributing to cluster µ.

Let’s use a uniform prior20 for P time and see how the 1-spike log-probability function depends

on amplitude, for fixed time shift t1 and cell type µ. Let $V (t) be the observed waveform and
$Fµ(t) a template.21 Recall that the boldface vectors above combine channel and time indices.

Thus

[δV]αt = Vα(t) − AFµα(t − t1)

Eqn. 2 now becomes22

logP1(µ,A, t1) = log Kµ − (A−γµ)2

2σ2
µ

− 1
2(δV)tC−1(δV) (7)

Here Kµ = P cell(µ)P time(t1)
(

2πσ2
µ

)

−1/2
. (We dropped some factors independent of µ.)

This quantity is maximal at A∗, where

0 = −A∗−γµ

σ2
µ

+
∑

α,t,β,t′

Fµα(t − t1)C
−1
α,t;β,t′(Vβ(t′) − A∗Fµβ(t′ − t1)) (8)

This equation is linear in A and hence trivial to solve. Define the adjoint

Gµβ(τ) =
∑

α,t̂

Fµα(t̂ )Sα,β(τ − t̂ )

Then let

‖Fµ‖
2 =

∑

β,t′′

Gµβ(t′′)Fµβ(t′′)

19 cmultifit.m checks post hoc if this is true, and updates the means and variances based on the fit it found. I’ll
also assume that these are all independent Gaussians for each µ; this too could be checked by cmultifit.m,
but hasn’t been yet. Gaussianity is thought by some to be a bad approximation [Shoham03], but on closer
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20 It would not be hard to replace this by a no-refractory-violations prior, if we upgrade the analysis of collisions
to a Lewicki94 approach: Just before the final choice between competing spike train interpretations, clobber
the ones with violations.

21 Units: !F and !V have units µV. A is dimensionless.
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Let          be measured voltage, electrode     and             be archetype waveform Vα(t) α Fµα(t)
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also assume that these are all independent Gaussians for each µ; this too could be checked by cmultifit.m,
but hasn’t been yet. Gaussianity is thought by some to be a bad approximation [Shoham03], but on closer
inspection I see they’re just referring to amplitude changes during a burst [Fee et al].
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P (spikes | data) = Kµ exp
�
− (A− γµ)2

2σ2
µ

− 1
2
(δV)tC−1(δV)

�
The noise covariance

JS Prentice,  J Homann, KD Simmons, G Tkacik, V Balasubramanian, PCN,  PLoS ONE 6(7): e19884 (2011).
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[Nuts and Bolts]

Next, we sweep over a range of t to find the best value of likelihood ratio for this 
spike type. [We only check t values close to the peak of the event.]

Then we choose the winner among spike types.

If the winner’s likelihood ratio is good enough (bigger than about 1), we say there’s a 
spike here. That’s the absolute criterion I promised earlier.
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$Fµ(t) a template.21 Recall that the boldface vectors above combine channel and time indices.
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[δV]αt = Vα(t) − AFµα(t − t1)

Eqn. 2 now becomes22
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2 =
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19 cmultifit.m checks post hoc if this is true, and updates the means and variances based on the fit it found. I’ll
also assume that these are all independent Gaussians for each µ; this too could be checked by cmultifit.m,
but hasn’t been yet. Gaussianity is thought by some to be a bad approximation [Shoham03], but on closer
inspection I see they’re just referring to amplitude changes during a burst [Fee et al].

20 It would not be hard to replace this by a no-refractory-violations prior, if we upgrade the analysis of collisions
to a Lewicki94 approach: Just before the final choice between competing spike train interpretations, clobber
the ones with violations.

21 Units: !F and !V have units µV. A is dimensionless.
22 Paninski’s lecture notes 2007, eqn. 3, is essentially the same but is used in a very different framework.

which is a Gaussian in A. So it’s easy to marginalize over A: just complete the square!   
[Here                                                              doesn’t depend on A.]
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say more and better

Test our assumptions
Can we really assume that 
the spikes from a particular 
cell differ only in overall 
amplitude? We took many 
events that contained a 
single spike of each type. 
Point by point in time, we 
subtracted the scaled shifted 
archetype and found the 
residual (on each channel).

Green: the archetype itself.
Red: mean deviation from 
archetype.
Blue: std deviation from 
archetype.
We really do subtract spikes 
pretty completely.
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Successfully fit overlaps
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Successfully fit overlaps
Top: Closeup of four channels, showing three fit archetypes found by the algorithm.
Bottom: sum of those fits (color) versus actual data (black).
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Each cell has a receptive field...

200 µm

... and they tile the whole visual field. MEA recording is high throughput: We got 
dozens of cells all at once. Here are cells from just one functional group, “on cells.” Each 
putative receptive field is a single connected region of image space.

KD Simmons, JS Prentice,  G Tkacik, J Homann, PCN, V Balasubramanian,  submitted.

Region of retina 
responded to by 
ganglion cell #1, etc.
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Receptive fields
Once you’ve got the spike trains, you can find receptive fields etc. Here’s a 
typical spike-triggered average. 

How interesting--guinea pig retina has a lot of these highly anisotropic 
receptive fields. The “surround” doesn’t surround the “center”!
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Receptive fields

stimulus grid y

Once you’ve got the spike trains, you can find receptive fields etc. Here’s a 
typical spike-triggered average. 

How interesting--guinea pig retina has a lot of these highly anisotropic 
receptive fields. The “surround” doesn’t surround the “center”!
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Takehome Part III

Optics Retina Brain Behavior

Visual 
scene in

Retinal 
ganglion cell 
spike trains

Retinal 
illumination 
pattern

I described how we identify the individual ganglion cell signals from a hash of noise and 
overlapping real signals:
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Theory can cut across apparently different kinds of experiment, offering useful 
methods to one domain from another without having to reinvent everything.

Full circle OK, I was a 
scatterbrain and 
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A physical model -- 
localized spreading of 
potential changes in 
solution -- helped us to 
extract what was going on.

Poisson processes

  Bayes 
formula
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There is something weirdly -- unreasonably -- effective about approaching biological systems 
with a physical model. I don’t understand why. I don’t need to understand why.

A physical model -- photon 
theory -- helped us to extract 
what was going on.

A physical model -- 
localized spreading of 
potential changes in 
solution -- helped us to 
extract what was going on.

Poisson processes

  Bayes 
formula
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Another context in which theory enters laboratory discussions is, “We need some 
theory to get this thing published. Go do some theory, run some ANOVA, 
whatever.”
I’d just like to suggest that this attitude, though common, misses out on some of 
what theory can do for you. Particularly, a physical model can give a lot of 
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Indeed. But that sort of cherry-picking approach can leave the impression that 
theory is something that happens every 50 years or so. It’s also too reverent.

My point so far is that theory is needed every day. It’s our microscope; our Geiger 
counter; it helps us to see the invisible.
To emphasize that, I didn’t select famous examples; instead I have told you about the 
two things I happen to be working on right now (a random choice, you’ll agree).

Another context in which theory enters laboratory discussions is, “We need some 
theory to get this thing published. Go do some theory, run some ANOVA, 
whatever.”
I’d just like to suggest that this attitude, though common, misses out on some of 
what theory can do for you. Particularly, a physical model can give a lot of 
dividends.

We like to teach famous success stories in science, but we don’t always remember to 
present them as showcases of the utility of physical modeling.
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For these slides see: 
www.physics.upenn.edu/~pcn
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