When you see a title like that, you need to worry: "Uh-oh, sounds philosophical."
Well, I just wanted to tell you two concrete stories about cases when my colleagues and I managed to do something useful by virtue of knowing something about inference. The ideas we needed were things I didn't know a few years ago, so I thought you might be interested too.

Inference in biological physics

Phil Nelson
 University of Pennsylvania

For these slides see:

WWW. physics.upenn.edu/~pcn

we need to make sure we don't forget to tell our undergraduates why theory exists. (Are there any students here today?) Remember, to them "theory" is a strongly negative word. ("How's it going in Physics N? Too much theory.") To them it means "stuff that won't get me a job because it's not relevant to anything practical." To them it's at best decorative, like music or art. If we think there's more to it than that, we'd better not forget to tell them
"If your experiment requires statistics, then you ought to have done a better experiment." -- Ernest Rutherford
"Of course that's what we do -- everybody knows that." -- No. They don't.
we need to make sure we don't forget to tell our undergraduates why theory exists. (Are there any students here today?) Remember, to them "theory" is a strongly negative word. ("How's it going in Physics N? Too much theory.") To them it means "stuff that won't get me a job because it's not relevant to anything practical." To them it's at best decorative, like music or art. If we think there's more to it than that, we'd better not forget to tell them
"If your experiment requires statistics, then you ought to have done a better experiment." -- Ernest Rutherford
"Of course that's what we do -- everybody knows that." -- No. They don't.
we need to make sure we don't forget to tell our undergraduates why theory exists. (Are there any students here today?) Remember, to them "theory" is a strongly negative word. ("How's it going in Physics N? Too much theory.") To them it means "stuff that won't get me a job because it's not relevant to anything practical." To them it's at best decorative, like music or art. If we think there's more to it than that, we'd better not forget to tell them

"If your experiment requires statistics, then you ought to have done a better experiment." -- Ernest Rutherford

Well... Statistical inference sounds "too theoretical," but it is often needed to extract information from data:
"Of course that's what we do -- everybody knows that." -- No. They don't.
we need to make sure we don't forget to tell our undergraduates why theory exists. (Are there any students here today?) Remember, to them "theory" is a strongly negative word. ("How's it going in Physics N? Too much theory.") To them it means "stuff that won't get me a job because it's not relevant to anything practical." To them it's at best decorative, like music or art. If we think there's more to it than that, we'd better not forget to tell them

"If your experiment requires statistics, then you ought to have done a better experiment." -- Ernest Rutherford

Well... Statistical inference sounds "too theoretical," but it is often needed to extract information from data:
*Sometimes suggests a new kind of measurement that tests a model more stringently, or distinguishes two different models more completely, than previous measurements.
"Of course that's what we do -- everybody knows that." -- No. They don't.
we need to make sure we don't forget to tell our undergraduates why theory exists. (Are there any students here today?) Remember, to them "theory" is a strongly negative word. ("How's it going in Physics N? Too much theory.") To them it means "stuff that won't get me a job because it's not relevant to anything practical." To them it's at best decorative, like music or art. If we think there's more to it than that, we'd better not forget to tell them

"If your experiment requires statistics, then you ought to have done a better experiment." -- Ernest Rutherford

Well... Statistical inference sounds "too theoretical," but it is often needed to extract information from data:
*Sometimes suggests a new kind of measurement that tests a model more stringently, or distinguishes two different models more completely, than previous measurements.
*Sometimes our model is not obviously connected with what we can actually measure experimentally, and we need to make a connection.
"Of course that's what we do -- everybody knows that." -- No.
They don't.
we need to make sure we don't forget to tell our undergraduates why theory exists. (Are there any students here today?) Remember, to them "theory" is a strongly negative word. ("How's it going in Physics N? Too much theory.") To them it means "stuff that won't get me a job because it's not relevant to anything practical." To them it's at best decorative, like music or art. If we think there's more to it than that, we'd better not forget to tell them

"If your experiment requires statistics, then you ought to have done a better experiment." -- Ernest Rutherford

Well... Statistical inference sounds "too theoretical," but it is often needed to extract information from data:
*Sometimes suggests a new kind of measurement that tests a model more stringently, or distinguishes two different models more completely, than previous measurements.
*Sometimes our model is not obviously connected with what we can actually measure experimentally, and we need to make a connection.
*Sometimes the model that interests us involves the behavior of actors that we can only see indirectly in our data; theory may be needed to separate them out from each other, and from noise.
"Of course that's what we do -- everybody knows that." -- No.
They don't.
we need to make sure we don't forget to tell our undergraduates why theory exists. (Are there any students here today?) Remember, to them "theory" is a strongly negative word. ("How's it going in Physics N? Too much theory.") To them it means "stuff that won't get me a job because it's not relevant to anything practical." To them it's at best decorative, like music or art. If we think there's more to it than that, we'd better not forget to tell them

"If your experiment requires statistics, then you ought to have done a better experiment." -- Ernest Rutherford

Well... Statistical inference sounds "too theoretical," but it is often needed to extract information from data:
*Sometimes suggests a new kind of measurement that tests a model more stringently, or distinguishes two different models more completely, than previous measurements.
*Sometimes our model is not obviously connected with what we can actually measure experimentally, and we need to make a connection.
*Sometimes the model that interests us involves the behavior of actors that we can only see indirectly in our data; theory may be needed to separate them out from each other, and from noise.

There's more, of course, but t "Of course that's what we do -- everybody knows that." -- No. They don't.

Part I:

start with a topic that may not be obviously biophysical in character. Suppose I stood here and said "all men are mortal; Socrates is mortal; therefore Socrates is a man"

Part I:

start with a topic that may not be obviously biophysical in character. Suppose I stood here and said "all men are mortal; Socrates is mortal; therefore Socrates is a man"

mortal

Part I:

start with a topic that may not be obviously biophysical in character. Suppose I stood here and said "all men are mortal; Socrates is mortal; therefore Socrates is a man"
mortal

In classical logic it's fairly easy to spot errors of inference.

An everyday question in clinical practice

To diagnose colorectal cancer, the hemoccult test-among others-is conducted to detect occult blood in the stool. This test is used from a particular age on, but also in routine screening for early detection of colorectal cancer. Imagine you conduct a screening using the hemoccult test in a certain region. For symptom-free people over 50 years old who participate in screening using the hemoccult test, the following information is available for this region:
The probability that one of these people has colorectal cancer is 0.3 percent. If a person has colorectal cancer, the probability is 50 percent that he will have a positive hemoccult test. If a person does not have colorectal cancer, the probability is 3 percent that he will still have a positive hemoccult test. Imagine a person (over age 50, no symptoms) who has a positive hemoccult test in your screening. What is the probability that this person actually has colorectal cancer? \qquad percent

G. Gigerenzer, Calculated risks

An everyday question in clinical practice

To diagnose colorectal cancer, the hemoccult test--among others-is conducted to detect occult blood in the stool. This test is used from a particular age on, but also in routine screening for early detection of colorectal cancer. Imagine you conduct a screening using the hemoccult test in a certain region. For symptom-free people over 50 years old who participate in screening using the hemoccult test, the following information is available for this region:
The probability that one of these people has colorectal cancer is 0.3 percent. If a person has colorectal cancer, the probability is 50 percent that he will have a positive hemoccult test. If a person does not have colorectal cancer, the probability is 3 percent that he will still have a positive hemoccult test. Imagine a person (over age 50, no symptoms) who has a positive hemoccult test in your screening. What is the probability that this person actually has colorectal cancer? \qquad percent

Estimates (\%)

Here are the replies of 24 practicing physicians, who had an average of 14 years of professional experience:

G. Gigerenzer, Calculated risks

[^0]
Work it out

We are asked for $P($ sick $I+)=B /(B+D)$.

Work it out

We are asked for $P($ sick $I+)=B /(B+D)$.

Work it out

We are asked for $P($ sick $I+)=B /(B+D)$.

Work it out

We are asked for $P($ sick $I+)=B /(B+D)$. But what we were given was $P(+\mid$ sick $)=B /(A+B)$.

Work it out

We are asked for $P($ sick $I+)=B /(B+D)$. But what we were given was $\mathrm{P}(+\mid$ sick $)=B /(A+B)$.

Work it out

We are asked for $P($ sick $I+)=B /(B+D)$. But what we were given was $P(+\mid$ sick $)=B /(A+B)$.

Work it out

We are asked for $\mathrm{P}($ sick $\mathrm{I}+)=\mathrm{B} /(\mathrm{B}+\mathrm{D})$. But what we were given was $\mathrm{P}(+\mid$ sick $)=\mathrm{B} /(\mathrm{A}+\mathrm{B})$.

Work it out

We are asked for $P($ sick $I+)=B /(B+D)$. But what we were given was $\mathrm{P}(+\mid$ sick $)=\mathrm{B} /(\mathrm{A}+\mathrm{B})$. These are not the same thing: they have different denominators. To get one from the other we need some more information:

Work it out

We are asked for $P($ sick $I+)=B /(B+D)$. But what we were given was $\mathrm{P}(+\mid$ sick $)=\mathrm{B} /(\mathrm{A}+\mathrm{B})$.
These are not the same thing: they have different denominators. To get one from the other we need some more information:
$\frac{B}{B+D}=\frac{B}{A+B} \times \frac{A+B}{B+D}$

Work it out

We are asked for $P($ sick $I+)=B /(B+D)$.
But what we were given was $\mathrm{P}(+\mid$ sick $)=B /(A+B)$.
These are not the same thing: they have different denominators. To get one from the other we need some more information:

$$
\frac{B}{B+D}=\frac{B}{A+B} \times \frac{A+B}{B+D}
$$

$P($ sick $\mid+)=P(+\mid$ sick $) \times \frac{P(\text { sick })}{P(+)}$

Posterior Likelihood Prior
estimate (given) estimate
(desired) (given)

Finish working it out

C=Healthy, -

D=Healthy, +

Finish working it out

$P($ sick $\mid+)=P(+\mid$ sick $) \times \frac{P(\text { sick })}{P(+)}$

$$
\begin{aligned}
P(+) & =B+D \\
& =\frac{B}{A+B}(A+B)+\frac{D}{C+D}(C+D) \\
& =P(+\mid \text { sick }) P(\text { sick })+P(+\mid \text { healthy }) P(\text { healthy }) \\
& =(0.5)(0.003)+(0.03)(0.997) \approx 0.03
\end{aligned}
$$

Finish working it out

$$
\begin{array}{ll}
P(\text { sick } \mid+)=P(+\mid \text { sick }) \times \frac{P(\text { sick })}{P(+)} & \mathrm{A}=\text { Sick, }- \\
\text { Is that last factor a big deal? } & \mathrm{B}=\text { Sick, }+
\end{array}
$$

$$
\begin{aligned}
P(+) & =B+D \\
& =\frac{B}{A+B}(A+B)+\frac{D}{C+D}(C+D) \\
& =P(+\mid \text { sick }) P(\text { sick })+P(+\mid \text { healthy }) P(\text { healthy }) \\
& =(0.5)(0.003)+(0.03)(0.997) \approx 0.03
\end{aligned}
$$

$\frac{P(\text { sick })}{P(+)} \approx \frac{0.003}{0.03} \approx 0.1$
It's huge: a positive test result means only a 5% chance you're sick. Not 97%.

Part II: Changepoint analysis in singlemolecule TIRF

JF Beausang, Yale Goldman, PN

* Sometimes our model is not obviously connected with what we can actually measure experimentally, but and we need to makes a connection.
* Sometimes the model that interests us involves the behavior of actors that we can only see indirectly in our data; theory may be needed to separate them out from each other, and from noise.

Many thanks to Haw Yang. See also Lucas P. Watkins and Haw Yang J. Phys. Chem. B 2005

Myosin V Processivity

We'd like to know things like: How does it walk? What are the steps in the kinetic pathway? What is the geometry of each state?
One classic approach is to monitor the position in space of a marker (e.g. a bead) attached to the motor. But this does not address the geometry of each state.

Myosin V Processivity

We'd like to know things like: How does it walk? What are the steps in the kinetic pathway? What is the geometry of each state?
One classic approach is to monitor the position in space of a marker (e.g. a bead) attached to the motor. But this does not address the geometry of each state.

The approach I'll discuss involves attaching a bifunctional fluorescent label to one lever arm. The label has a dipole moment whose orientation in space reflects that of the arm.

Myosin V Processivity

Myosin V Processivity

Myosin V Processivity

Myosin V Processivity

Polarized total internal reflection fluorescence microscopy

Fluorescence illumination by the evanescent wave eliminates a lot of noise, and importantly, maintains the polarization of the incident light.
To tickle the fluorophore with every possible polarization, we need the incoming light to have at least two different beam directions.

pol-TIRF setup

pol-TIRF setup

8 polarized illuminations $\times 2$ detectors $=16$ fluorescent intensities per cycle

Current state of the art

It's a bit more meaningful to convert from lab-frame angles θ, ϕ to actin-frame angles α, β. Even then, however, state of the art calculations give pretty noisy determinations, with pretty poor time resolution.
You could easily miss a short-lived state -- e.g. the elusive diffusive-search step (if it exists). Can't we do better?

JN Forkey et al. Nature 2003

Unfortunately, the total photon counts from a fluorescent probe may not be very informative. Here we divided a time period of interest into 20 bins. There is some Poiss Horizontal axis is time. Vertical axis is binned photon count, PFI =polarized fluorescence intensity

JF Beausang, YE Goldman, and PCN, Meth. Enzymol. 487:431 (2011).
binned tot. Inten: 1221,1322
Unfortunately, the total photon counts from a fluorescent probe may not be very informative. Here we divided a time neriod of interest into 20 bins. There is some Poiss

If we classify the photons by polarization and bin them separately, that reveals a definite changepoint. But when exactly did it occur? Probably not at the dashed line shown, but how can we be more precise?

JF Beausang, YE Goldman, and PCN, Meth. Enzymol. 487:431 (2011).

Unfortunately, the total photon counts from a fluorescent probe may not be very informative. Here we divided a time neriod of interest into 20 bins. There is some Poiss

If we classify the photons by polarization and bin them separately, that reveals a definite changepoint. But when exactly did it occur? Probably not at the dashed line shown, but how can we be more precise?

If we choose wider bins, we'll get worse time resolution; if we choose narrower bins, we'll get worse shot-noise errors.

JF Beausang, YE Goldman, and PCN, Meth. Enzymol. 487:431 (2011).

Unfortunately, the total photon counts from a fluorescent probe may not be very informative. Here we divided a time neriod of interest into 20 bins. There is some Poiss Horizontal axis is)n counts, of course. ($[\mathrm{ATP}]=10 \mathrm{uM}$)

If we classify the photons by polarization and bin them separately, that reveals a definite changepoint. But when exactly did it occur? Probably not at the dashed line shown, but how can we be more precise?

If we choose wider bins, we'll get worse time resolution; if we choose narrower bins, we'll get worse shot-noise errors.
Can we evade the cruel logic of photon statistics?

JF Beausang, YE Goldman, and PCN, Meth. Enzymol. 487:431 (2011).
binned tot. Inten: 1221,1322
Unfortunately, the total photon counts from a fluorescent probe may not be very informative. Here we divided a time neriod of interest into 20 bins. There is some Poiss counts, of course. ($[\mathrm{ATP}]=10 \mathrm{uM}$)

If we classify the photons by polarization and bin them separately, that reveals a definite changepoint. But when exactly did it occur? Probably not at the dashed line shown, but how can we be more precise?

If we choose wider bins, we'll get worse time resolution; if we choose narrower bins, we'll get worse shot-noise errors.
Can we evade the cruel logic of photon statistics?
It turns out that binning the data destroyed some information. Something magical happens if instead of binning, we just we plot photon arrival time versus photon sequence number. Despite some ripples from Poisson statistics, it's obvious that each trace has a sharp changepoint, and moreover that the two changepoints found independently in this way are simultaneous.
(A similar approach in the context of FRET was pioneered
 by Haw Yang.)

JF Beausang, YE Goldman, and PCN, Meth. Enzymol. 487:431 (2011).

Now that I have your attention

- Why did that trick work? How did we get such great time resolution from such cruddy data?
- How well does it work? If we have even fewer photons, for example because a state is shortlived, how can we quantify our confidence that any changepoint occurred at all?
- Could we generalize and automate this trick? Ultimately we'll want to handle data with multiple polarizations, and find lots of changepoints.

Now that I have your attention

- Why did that trick work? How did we get such great time resolution from such cruddy data?
- How well does it work? If we have even fewer photons, for example because a state is shortlived, how can we quantify our confidence that any changepoint occurred at all?
- Could we generalize and automate this trick? Ultimately we'll want to handle data with multiple polarizations, and find lots of changepoints.
The appropriate tool is maximum-likelihood analysis:

Now that I have your attention

- Why did that trick work? How did we get such great time resolution from such cruddy data?
- How well does it work? If we have even fewer photons, for example because a state is shortlived, how can we quantify our confidence that any changepoint occurred at all?
- Could we generalize and automate this trick? Ultimately we'll want to handle data with multiple polarizations, and find lots of changepoints.
The appropriate tool is maximum-likelihood analysis:
Focus on just one "flavor" of photons (e.g. one polarization).
- Why did that trick work? How did we get such great time resolution from such cruddy data?
- How well does it work? If we have even fewer photons, for example because a state is shortlived, how can we quantify our confidence that any changepoint occurred at all?
- Could we generalize and automate this trick? Ultimately we'll want to handle data with multiple polarizations, and find lots of changepoints.
The appropriate tool is maximum-likelihood analysis:
Focus on just one "flavor" of photons (e.g. one polarization).
Suppose that in total time T we catch N photons at times $t_{1}, \ldots t_{\mathrm{N}}$.

Now that I have your attention

- Why did that trick work? How did we get such great time resolution from such cruddy data?
- How well does it work? If we have even fewer photons, for example because a state is shortlived, how can we quantify our confidence that any changepoint occurred at all?
- Could we generalize and automate this trick? Ultimately we'll want to handle data with multiple polarizations, and find lots of changepoints.
The appropriate tool is maximum-likelihood analysis:
Focus on just one "flavor" of photons (e.g. one polarization).
Suppose that in total time T we catch N photons at times $t_{1}, \ldots t_{N}$.
We wish to explore the hypothesis that photons are arriving in a Poisson process with rate R from time 0 to time t_{*}, and thereafter arrive in another Poisson process with rate R^{\prime}.

Now that I have your attention

- Why did that trick work? How did we get such great time resolution from such cruddy data?
- How well does it work? If we have even fewer photons, for example because a state is shortlived, how can we quantify our confidence that any changepoint occurred at all?
- Could we generalize and automate this trick? Ultimately we'll want to handle data with multiple polarizations, and find lots of changepoints.
The appropriate tool is maximum-likelihood analysis:
Focus on just one "flavor" of photons (e.g. one polarization).
Suppose that in total time T we catch N photons at times $t_{1}, \ldots t_{N}$.
We wish to explore the hypothesis that photons are arriving in a Poisson process with rate R from time 0 to time t_{*}, and thereafter arrive in another Poisson process with rate R^{\prime}.
We want to find our best estimates of the three parameters t, R, and R^{\prime}, find confidence intervals for them, and compare the null hypothesis that there was no changepoint.

Now that I have your attention

- Why did that trick work? How did we get such great time resolution from such cruddy data?
- How well does it work? If we have even fewer photons, for example because a state is shortlived, how can we quantify our confidence that any changepoint occurred at all?
- Could we generalize and automate this trick? Ultimately we'll want to handle data with multiple polarizations, and find lots of changepoints.
The appropriate tool is maximum-likelihood analysis:
Focus on just one "flavor" of photons (e.g. one polarization).
Suppose that in total time T we catch N photons at times $t_{1}, \ldots t_{\mathrm{N}}$.
We wish to explore the hypothesis that photons are arriving in a Poisson process with rate R from time 0 to time t_{*}, and thereafter arrive in another Poisson process with rate R^{\prime}.
We want to find our best estimates of the three parameters t_{*}, R, and R^{\prime}, find confidence intervals for them, and compare the null hypothesis that there was no changepoint.

To do this, we ask for the "Likelihood," the probability that the data we actually observed would have been observed in a world described by our model with particular values of the unknown fit parameters:

Now that I have your attention

- Why did that trick work? How did we get such great time resolution from such cruddy data?
- How well does it work? If we have even fewer photons, for example because a state is shortlived, how can we quantify our confidence that any changepoint occurred at all?
- Could we generalize and automate this trick? Ultimately we'll want to handle data with multiple polarizations, and find lots of changepoints.
The appropriate tool is maximum-likelihood analysis:
Focus on just one "flavor" of photons (e.g. one polarization).
Suppose that in total time T we catch N photons at times $t_{1}, \ldots t_{\mathrm{N}}$.
We wish to explore the hypothesis that photons are arriving in a Poisson process with rate R from time 0 to time t_{*}, and thereafter arrive in another Poisson process with rate R^{\prime}.
We want to find our best estimates of the three parameters t_{*}, R, and R^{\prime}, find confidence intervals for them, and compare the null hypothesis that there was no changepoint.

To do this, we ask for the "Likelihood," the probability that the data we actually observed would have been observed in a world described by our model with particular values of the unknown fit parameters:
$\log P\left(t_{1}, \ldots, t_{N} \mid R, R^{\prime}, t_{*}\right)=\sum_{k=1}^{t_{*} / \Delta t} \log \begin{cases}R \Delta t & \text { if a photon in this slice } \\ (1-R \Delta t) & \text { otherwise }\end{cases}$

Now that I have your attention

- Why did that trick work? How did we get such great time resolution from such cruddy data?
- How well does it work? If we have even fewer photons, for example because a state is shortlived, how can we quantify our confidence that any changepoint occurred at all?
- Could we generalize and automate this trick? Ultimately we'll want to handle data with multiple polarizations, and find lots of changepoints.
The appropriate tool is maximum-likelihood analysis:
Focus on just one "flavor" of photons (e.g. one polarization).
Suppose that in total time T we catch N photons at times $t_{1}, \ldots t_{\mathrm{N}}$.
We wish to explore the hypothesis that photons are arriving in a Poisson process with rate R from time 0 to time t_{*}, and thereafter arrive in another Poisson process with rate R^{\prime}.
We want to find our best estimates of the three parameters t_{*}, R, and R^{\prime}, find confidence intervals for them, and compare the null hypothesis that there was no changepoint.

To do this, we ask for the "Likelihood," the probability that the data we actually observed would have been observed in a world described by our model with particular values of the unknown fit parameters:

$$
\begin{aligned}
& \log P\left(t_{1}, \ldots, t_{N} \mid R, R^{\prime}, t_{*}\right)=\sum_{k=1}^{t_{*} / \Delta t} \log \begin{cases}R \Delta t & \text { if a photon in this slice } \\
(1-R \Delta t) & \text { otherwise }\end{cases} \\
&+\sum_{k^{\prime}=t_{*} / \Delta t+1}^{T / \Delta t} \log \begin{cases}R^{\prime} \Delta t & \text { if a photon in this slice } \\
\left(1-R^{\prime} \Delta t\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

From previous slide: In total time T we catch N photons at times $t_{1}, \ldots t_{N}$.
Hypothesis is that photons are arriving in a Poisson process with rate R from time 0 to time t_{*}, and thereafter arrive in another Poisson process with rate R^{\prime}.

$$
\begin{aligned}
& \log P\left(t_{1}, \ldots, t_{N} \mid R, R^{\prime}, t_{*}\right)=\sum_{k=1}^{t_{*} / \Delta t} \log \begin{cases}R \Delta t & \text { if a photon in this slice } \\
(1-R \Delta t) & \text { otherwise }\end{cases} \\
&+\sum_{k^{\prime}=t_{*} / \Delta t+1}^{T / \Delta t} \log \begin{cases}R^{\prime} \Delta t & \text { if a photon in this slice } \\
\left(1-R^{\prime} \Delta t\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

Now: Divide the N photons into n that arrived before the putative changepoint, and $n^{\prime}=N-n$ that arrived after.
Take the limit $\Delta t \rightarrow 0$:

From previous slide: In total time T we catch N photons at times $t_{1}, \ldots t_{N}$.
Hypothesis is that photons are arriving in a Poisson process with rate R from time 0 to time t_{*}, and thereafter arrive in another Poisson process with rate R^{\prime}.

$$
\begin{aligned}
& \log P\left(t_{1}, \ldots, t_{N} \mid R, R^{\prime}, t_{*}\right)=\sum_{k=1}^{t_{*} / \Delta t} \log \begin{cases}R \Delta t & \text { if a photon in this slice } \\
(1-R \Delta t) & \text { otherwise }\end{cases} \\
&+\sum_{k^{\prime}=t_{*} / \Delta t+1}^{T / \Delta t} \log \begin{cases}R^{\prime} \Delta t & \text { if a photon in this slice } \\
\left(1-R^{\prime} \Delta t\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

Now: Divide the N photons into n that arrived before the putative changepoint, and $n^{\prime}=N-n$ that arrived after.
Take the limit $\Delta t \rightarrow 0$:
$P \approx N \log (\Delta t)+n \log R+n^{\prime} \log R^{\prime}-\left(\frac{t_{*}}{\Delta t}-n\right)(R \Delta t)-\left(\frac{T-t_{*}}{\Delta T}-1-(N-n)\right)\left(R^{\prime} \Delta t\right)$
\approx const $+n \log R+n^{\prime} \log R^{\prime}-R t_{*}-R^{\prime}\left(T-t_{*}\right)$

From previous slide: In total time T we catch N photons at times $t_{1}, \ldots t_{N}$.
Hypothesis is that photons are arriving in a Poisson process with rate R from time 0 to time t_{*}, and thereafter arrive in another Poisson process with rate R^{\prime}.

$$
\begin{aligned}
& \log P\left(t_{1}, \ldots, t_{N} \mid R, R^{\prime}, t_{*}\right)=\sum_{k=1}^{t_{*} / \Delta t} \log \begin{cases}R \Delta t & \text { if a photon in this slice } \\
(1-R \Delta t) & \text { otherwise }\end{cases} \\
&+\sum_{k^{\prime}=t_{*} / \Delta t+1}^{T / \Delta t} \log \begin{cases}R^{\prime} \Delta t & \text { if a photon in this slice } \\
\left(1-R^{\prime} \Delta t\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

Now: Divide the N photons into n that arrived before the putative changepoint, and $n^{\prime}=N-n$ that arrived after.
Take the limit $\Delta t \rightarrow 0$:

$$
\begin{aligned}
P & \approx N \log (\Delta t)+n \log R+n^{\prime} \log R^{\prime}-\left(\frac{t_{*}}{\Delta t}-n\right)(R \Delta t)-\left(\frac{T-t_{*}}{\Delta T}-1-(N-n)\right)\left(R^{\prime} \Delta t\right) \\
& \approx \text { const }+n \log R+n^{\prime} \log R^{\prime}-R t_{*}-R^{\prime}\left(T-t_{*}\right)
\end{aligned}
$$

Maximize this first over R and R^{\prime} :

$$
R=n / t_{*}, \quad R^{\prime}=n^{\prime} /\left(T-t_{*}\right)
$$

From previous slide: In total time T we catch N photons at times $t_{1}, \ldots t_{N}$.
Hypothesis is that photons are arriving in a Poisson process with rate R from time 0 to time t_{*}, and thereafter arrive in another Poisson process with rate R^{\prime}.

$$
\begin{aligned}
& \log P\left(t_{1}, \ldots, t_{N} \mid R, R^{\prime}, t_{*}\right)=\sum_{k=1}^{t_{*} / \Delta t} \log \begin{cases}R \Delta t & \text { if a photon in this slice } \\
(1-R \Delta t) & \text { otherwise }\end{cases} \\
&+\sum_{k^{\prime}=t_{*} / \Delta t+1}^{T / \Delta t} \log \begin{cases}R^{\prime} \Delta t & \text { if a photon in this slice } \\
\left(1-R^{\prime} \Delta t\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

Now: Divide the N photons into n that arrived before the putative changepoint, and $n^{\prime}=N-n$ that arrived after.
Take the limit $\Delta t \rightarrow 0$:

$$
\begin{aligned}
P & \approx N \log (\Delta t)+n \log R+n^{\prime} \log R^{\prime}-\left(\frac{t_{*}}{\Delta t}-n\right)(R \Delta t)-\left(\frac{T-t_{*}}{\Delta T}-1-(N-n)\right)\left(R^{\prime} \Delta t\right) \\
& \approx \text { const }+n \log R+n^{\prime} \log R^{\prime}-R t_{*}-R^{\prime}\left(T-t_{*}\right)
\end{aligned}
$$

Maximize this first over R and R^{\prime} :

$$
R=n / t_{*}, \quad R^{\prime}=n^{\prime} /\left(T-t_{*}\right)
$$

OK, duh, that was no surprise! But it does explain why we can just lay a ruler along the cumulative plot to get our best estimate of the before and after rates.

From previous slide: In total time T we catch N photons at times $t_{1}, \ldots t_{N}$.
Hypothesis is that photons are arriving in a Poisson process with rate R from time 0 to time t_{*}, and thereafter arrive in another Poisson process with rate R^{\prime}.

$$
\begin{aligned}
& \log P\left(t_{1}, \ldots, t_{N} \mid R, R^{\prime}, t_{*}\right)=\sum_{k=1}^{t_{*} / \Delta t} \log \begin{cases}R \Delta t & \text { if a photon in this slice } \\
(1-R \Delta t) & \text { otherwise }\end{cases} \\
&+\sum_{k^{\prime}=t_{*} / \Delta t+1}^{T / \Delta t} \log \begin{cases}R^{\prime} \Delta t & \text { if a photon in this slice } \\
\left(1-R^{\prime} \Delta t\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

Now: Divide the N photons into n that arrived before the putative changepoint, and $n^{\prime}=N-n$ that arrived after.
Take the limit $\Delta t \rightarrow 0$:

$$
\begin{aligned}
P & \approx N \log (\Delta t)+n \log R+n^{\prime} \log R^{\prime}-\left(\frac{t_{*}}{\Delta t}-n\right)(R \Delta t)-\left(\frac{T-t_{*}}{\Delta T}-1-(N-n)\right)\left(R^{\prime} \Delta t\right) \\
& \approx \mathrm{const}+n \log R+n^{\prime} \log R^{\prime}-R t_{*}-R^{\prime}\left(T-t_{*}\right)
\end{aligned}
$$

Maximize this first over R and R^{\prime} :

$$
R=n / t_{*}, \quad R^{\prime}=n^{\prime} /\left(T-t_{*}\right)
$$

OK, duh, that was no surprise! But it does explain why we can just lay a ruler along the cumulative plot to get our best estimate of the before and after rates.
More interestingly, we can substitute these optimal rates into the formula for P to find the likelihood as a function of putative changepoint:

Application

Application

Here's some very fake data; the photons arrive uniformly, not at random.

Application

Here are two lines corresponding to non-optimal choices of the changepoint. We'd like to see the likelihood function and how it selects the "right" changepoint, which for fake data is known.

Application

Here is our log-likelihood function as a function of putative changepoint time.

Here's some very fake data; the photons arrive uniformly, not at random.

Left: Some more realistic (Poisson-arrival) simulated data, shown in traditional binned form and in the improved version.

Right: Likelihood function for placement of the changepoint. Dashed line, maximum-likelihood point. Black triangle: Actual changepoint used in the simulation.

Left: Some more realistic (Poisson-arrival) simulated data, shown in traditional binned form and in the improved version.

Right: Likelihood function for placement of the changepoint. Dashed line, maximum-likelihood point. Black triangle: Actual changepoint used in the simulation.

Oh, yes -- the method also works on multiple-channel data. Left: one channel (red) starts with rare photons, then jumps to higher intensity. Another channel (blue) does the opposite. The sum of the intensities (black) doesn't change much at all.
Middle: "kink" representations of the same data. Right: both channels contribute to a likelihood function with a robust peak, even though there were only a total of just 200 photons in the entire dataset.

JF Beausang, YE Goldman, and PCN, Meth. Enzymol. 487:431 (2011).

Payoff

JF Beausang, YE Goldman, and PCN, Meth. Enzymol. 487:431 (2011).

Payoff

Oh, yes-it also works on real experimental data.
Now we can get back to the original motivation. Previously, people would take data from multiple polarizations, bin it, and pipe the inferred intensities into a maximum-likelihood estimator of the orientation of the fluorophore. That procedure leads to the rather noisy dots shown here.
One problem is that if a transition happens in the middle of a time bin, then the inferred orientation in that time bin can be crazy.

Here the solid lines are the inferred orientations of the probe molecule during successive states defined by changepoint analysis. We see a nice alternating stride in ϕ.

JF Beausang, YE Goldman, and PCN, Meth. Enzymol. 487:431 (2011).

Summary Part II

*When you only get a million photons, you'd better make every photon count.

* A simple maximum-likelihood analysis accomplishes this.
* In the context of TIRF it can dramatically improve the tradeoff between time resolution and accuracy.

Part III: Parallel recordings from dozens of individual neurons

* Sometimes suggests a new kind of measurement that tests a model more stringently, or distinguishes two different models more completely, than previous measurements.
* Sometimes our model is not obviously connected with what we can actually measure experimentally, and we need to make a connection.
*Sometimes the model that interests us involves the behavior of actors that we can only see indirectly in our data; theory may be needed to separate them out from each other, and from noise. individual neurons

*Sometimes the model that interests us involves the behavior of actors that we can only see indirectly in our data; theory may be needed to separate them out from each other, and from noise.

Sources of energy

Experiments done in the lab of Vijay Balasubramanian (Penn).

Sources of energy

Experiments done in the lab of Vijay Balasubramanian (Penn).

Kristy Simmons, Penn Neuroscience

(plus Gasper Tkacik.)
(Many thanks to Michael Berry and Olivier Marre, Princeton; Bart Borghuis, Janelia Farms; Michael Freed and others at Penn Retina Lab; Joerg Sander, U Alberta; Ronen Segev, BGU, Chris Wiggins, Columbia.)

Really big picture

Retina is also an approachable, yet still complex, part of the brain. It's a 2D carpet consisting of "only" three layers of neurons.

Retinal
illumination pattern

Retinal
ganglion cell
spike trains

Really big picture

Retina is also an approachable, yet still complex, part of the brain. It's a 2D carpet consisting of "only" three layers of neurons.

Retinal
illumination pattern

Retina

It matters

Your source for the latest research news

Artificial Retina More Capable of Restoring Normal Vision; Animal Study Shows Including Retina's Neural 'Code' Improved Prosthetic

ScienceDaily (Nov. 16, 2010) - Researchers have developed an artificial retina that has the capacity to reproduce normal vision in mice. While other prosthetic strategies mainly increase the number of electrodes in an eye to capture more information, this study concentrated on incorporating the eye's neural "code" that converts pictures into signals the brain can understand.

The research was presented at

Just In:
Antarctic Blue Whales Shows High Diversity

- more breaking science news

Ads by Google

Exercise Your Brain - Games You Didn't Know Existed to Fight Brain Decline and Aging.

 www.lumosity.comBi Polar Test - Learn If You Are Bi Polar In (5) Simple Questions. thelifevibe.com

Normal Blood Sugar Levels - Worried About Blood Sugar? Find Out Whats Normal Todav.

IT'S NOT TOO LATE TO VAGCINATE
THE FLU ENDS WITH YOU
FLU.GOV

Social Networks

Share this story on Facebook, Twitter, \& Google:

$$
\text { F Like } 99 \quad \text { Tweet } 0 \quad \overline{+1}<0
$$

Other social bookmarking and sharing tools:

Digg StumbleUpon in LinkedIn Email
Reddit $\%$ Slashdot F Fark ShareThis

Ω StumbleUponkedIn Email绝 Reddit \% Slashdot F Fark ShareThis

It matters

Your source for the latest research news

Artificial Retina More Capable of Restoring Normal Vision; Animal Study Shows Including Retina's Neural 'Code' Improved Prosthetic

Jusi 1 :

Antarc c Blue Whales Shows High Diversity

- more breaking science news

Scrormana (Nov. 16, 2010) - Researchers have developed an artiticialieuria to reproduce normal vision in mice. While other prosthetic strategies mainly increase the number of electrodes in an eye to capture more information, this study concentrated on incorporating the eye's neural "code" that converts pictures into signals the brain can understand.

Ads by Google
Exercise Your Brain - Games You Didn't Know Existed to Fight Brain Decline and Aging. www.lumosity.com

Bi Polar Test - Learn If You Are Bi Polar In (5) Simple Questions. thelifevibe.com

Normal Blood Sugar Levels - Worried About Blood Sugar? Find Out Whats Normal Todav.

Social Networks

Share this story on Facebook, Twitter, \& Google:
FLike $99 \quad$ Tweet 0 +1 0

Other social bookmarking and sharing tools:
만 Dig
Ω StumbleUponLinkedIn
Emai
给 Reddit \% Slashdot F Fark ShareThis

Summary, Part III

2. Clustering
3. Fitting
4. Performance

Get data

Cluster

Fit
Interpret

Cf Meister, Pine, and Baylor 1994. Incredibly, one can keep a mammalian retina alive in a dish for over 6 hours while presenting it stimuli and recording its activity.
94.

Cf Meister, Pine, and Baylor 1994. Incredibly, one can keep a mammalian retina alive in a dish for over 6 hours while presenting it stimuli and recording its activity.

What's in the dish

Michael Berry, Princeton

Simple events

67 ms of data, viewed as a movie.
[data have been smoothed]

Simple events

67 ms of data, viewed as a movie.
[data have been smoothed]

Some spikes move across the array:

Simple events

67 ms of data, viewed as a movie.
[data have been smoothed]

Some spikes move across the array:

Simple events

67 ms of data, viewed as a movie.
[data have been smoothed]

Some spikes move across the array:

Simple events

67 ms of data, viewed as a movie.
[data have been smoothed]

Some spikes move across the array:

The spike-sorting problem is: Given raw data like these, convert to a list of discrete events (which cells fired at what times).

Not-so-simple events

which electrode, x

Unfortunately many events are complex, with multiple overlapping spikes in many locations. And of course these may be the most interesting ones!

It really matters because "Failure in identification of overlapping spikes from multiple neuron activity causes artificial correlations" [Bar-Gad '01]. Moreover, when we graduate to bigger arrays, nearly all events will involve overlaps in time!!

Many authors say bursts are a big problem, but here is a nice fit that we obtained with no special effort. See later.

We even handle overlapping spikes, which some algorithms do not attempt. See later.

JS Prentice, J Homann, KD Simmons, G Tkacik, V Balasubramanian, PCN, PLoS ONE 6(7): e19884 (2011).
2. Clustering
3. Fitting
4. Performance

[Sorry, no time to discuss our method for this step.]

Superposing 50 traces chosen from 284 in this cluster shows that they really do all resemble each other.

Occasional events in which this event collides with another don't affect the

 "archetype waveform" (template) (next slide).

Although the shape of

 each instance of the archetype is quite constant, still its amplitude has significant variation.

JS Prentice, J Homann, KD Simmons, G Tkacik, V Balasubramanian, PCN, PLoS ONE 6(7): e19884 (2011).

Resulting archetype

We scaled each instance of each archetype to get best agreement with the others, then took the median at each time point to find our best estimate of the consensus waveform (blue). As a check, the pointwise mean waveform looks the same (red).

Fit
Interpret

Noise covariance

Vanilla least-squares fitting is not appropriate for time series, because it assumes that every sample is independent of all others--whereas actually, successive samples are correlated.
Here is the covariance of channel \#13 with all other channels (after an initial spatial filter, also obtained from data). For reference, each channel has a single blue curve showing an exponential function.

We see that \#13 is correlated only with itself, and it has a simple covariance matrix that is easy to invert. The inverse covariance thus obtained defines our correlated Gaussian model of the noise.
[Again: The covariance is not a delta function, contrary to what is assumed in naive leastsquares fitting.]

On inference

Suppose we measure some experimental data, and wish to make an inference about some situation that we cannot directly observe. That is, we imagine a variety of worlds with different values of X, and ask which is most probable given the observed data.

On inference

Suppose we measure some experimental data, and wish to make an inference about some situation that we cannot directly observe. That is, we imagine a variety of worlds with different values of X, and ask which is most probable given the observed data.

If we know the probability that those data would have arisen in a world with a particular value of X, then Bayes's formula gives us what we actually want:

$$
P(X \mid \text { observed data })=P(\text { data } \mid X) \frac{P(X)}{P(\text { data })}
$$

We can ignore the denominator, if all we want is to compare two hypotheses (e.g. maximize over X).

On inference

Suppose we measure some experimental data, and wish to make an inference about some situation that we cannot directly observe. That is, we imagine a variety of worlds with different values of X, and ask which is most probable given the observed data.

If we know the probability that those data would have arisen in a world with a particular value of X, then Bayes's formula gives us what we actually want:

$$
P(X \mid \text { observed data })=P(\text { data } \mid X) \frac{P(X)}{P(\text { data })}
$$

We can ignore the denominator, if all we want is to compare two hypotheses (e.g. maximize over X).

For our application, we'd like (spikes I data), where "data" is an observed waveform and "spikes" refers to a collection of spike archetypes μ_{1}, \ldots occurring at times t_{1}, \ldots with amplitudes $A_{1,}$. relative to the anplitude of the corresponding archetype (neuron). Bayes's formula gives what we want as
$\mathbf{K} \times($ likelihood $) \times($ prior $)=\mathbf{K P}($ data I spikes $) \mathbf{P}($ spikes $)$

See M. Denny and S. Gaines, Chance in Biology.

Bayesian idea

Previous slide expressed \mathbf{P} (spikes I data) as:

$$
\mathbf{K} \times(\text { likelihood }) \times(\text { prior })=\mathbf{K} \mathbf{P}(\text { data } \mid \text { spikes }) \mathbf{P}(\text { spikes })
$$

Here "spikes" refers to a collection of spike archetypes μ_{1}, \ldots occurring at times t_{1}, \ldots with amplitudes A_{1}, \ldots relative to the amplitude of the corresponding archetype.

Bayesian idea

Previous slide expressed \mathbf{P} (spikes I data) as:

$\mathbf{K} \times($ likelihood $) \times($ prior $)=\mathbf{K} \mathbf{P}($ data I spikes $) \mathbf{P}($ spikes $)$

Here "spikes" refers to a collection of spike archetypes μ_{1}, \ldots occurring at times t_{1}, \ldots with amplitudes A_{1}, \ldots relative to the amplitude of the corresponding archetype.

To get the prior, \mathbf{P} (spikes), assume that for a single spike it has the form

$$
\underline{P}^{\text {cell }}(\mu) \underline{P^{\mathrm{time}}(t)} \underline{P}^{\mathrm{ampl}}(A \mid \mu)
$$

The three factors are respectively the popularity of this neuron, uniform in time, and a Gaussian reflecting its typical amplitude and amplitude variability. We get these priors from the data subset used in clustering.

Bayesian idea

Previous slide expressed \mathbf{P} (spikes I data) as:

$\mathbf{K} \times($ likelihood $) \times($ prior $)=\mathbf{K} \mathbf{P}($ data I spikes $) \mathbf{P}($ spikes $)$

Here "spikes" refers to a collection of spike archetypes μ_{1}, \ldots occurring at times t_{1}, \ldots with amplitudes A_{1}, \ldots relative to the amplitude of the corresponding archetype.

To get the prior, \mathbf{P} (spikes), assume that for a single spike it has the form

$$
\underline{P^{\mathrm{cell}}(\mu)} \underline{P^{\mathrm{time}}(t)} \underline{P^{\mathrm{ampl}}(A \mid \mu)}
$$

The three factors are respectively the popularity of this neuron, uniform in time, and a Gaussian reflecting its typical amplitude and amplitude variability. We get these priors from the data subset used in clustering.

To get the likelihood function \mathbf{P} (data I spikes), suppose that the data consist of one archetype, plus noise. And suppose that the noise is some Gaussian, independent of which spikes fired. We know all about this Gaussian from our measurement of noise covariance.

Then the likelihood is that distribution, evaluated at the difference between the actual waveform and the idealized one. [Pouzat et. al. 2002]

Bayesian idea, II

We start with an experimental trace ("data").
We find its peak (absolute minimum), and start looking for a spike there.
We ask for the likelihood ratio between the hypotheses of no spike versus one spike of given type, at given time, with given amplitude.
\star To compute the likelihood of no spike, evaluate the noise distribution on the trace.
\# To compute the probability of one spike, choose a spike archetype and a value of \mathbf{t}, the spike time. Holding the "data" fixed, the probability is now a Gaussian function in the remaining parameter \mathbf{A}, so it's fast and easy to marginalize over A.

[Nuts and Bolts]

Let $V_{\alpha}(t)$ be measured voltage, electrode α and $F_{\mu \alpha}(t)$ be archetype waveform of type μ. Define the deviation

$$
[\delta \mathbf{V}]_{\alpha t}=V_{\alpha}(t)-A F_{\mu \alpha}\left(t-t_{1}\right)
$$

Then the probability that one spike, of type μ, is present is
$P($ spikes \mid data $)=K_{\mu} \exp \left[-\frac{\left(A-\gamma_{\mu}\right)^{2}}{2 \sigma_{\mu}^{2}}-\frac{1}{2}(\delta \mathbf{V})^{\mathrm{t}} \mathrm{C}^{-1}(\delta \mathbf{V})\right]$
which is a Gaussian in A. So it's easy to marginalize over A: just complete the square! [Here $K_{\mu}=P^{\text {cell }}(\mu) P^{\text {time }}\left(t_{1}\right)\left(2 \pi \sigma_{\mu}^{2}\right)^{-1 / 2}$ doesn't depend on A.]

[Nuts and Bolts]

Let $V_{\alpha}(t)$ be measured voltage, electrode α and $F_{\mu \alpha}(t)$ be archetype waveform of type μ. Define the deviation $\quad[\delta \mathbf{V}]_{\alpha t}=V_{\alpha}(t)-A F_{\mu \alpha}\left(t-t_{1}\right)$

Then the probability that one spike, of type μ, is present is
The noise covariance
$P($ spikes \mid data $)=K_{\mu} \exp \left[-\frac{\left(A-\gamma_{\mu}\right)^{2}}{2 \sigma_{\mu}^{2}}-\frac{1}{2}(\delta \mathbf{V})^{\mathrm{t}} \mathrm{C}^{-1}(\delta \mathbf{V})\right]$
which is a Gaussian in A. So it's easy to marginalize over A: just complete the square! [Here $K_{\mu}=P^{\text {cell }}(\mu) P^{\text {time }}\left(t_{1}\right)\left(2 \pi \sigma_{\mu}^{2}\right)^{-1 / 2}$ doesn't depend on A.]

Next, we sweep over a range of \mathbf{t} to find the best value of likelihood ratio for this spike type. [We only check \mathbf{t} values close to the peak of the event.]

JS Prentice, J Homann, KD Simmons, G Tkacik, V Balasubramanian, PCN, PLoS ONE 6(7): e19884 (2011).

[Nuts and Bolts]

Let $V_{\alpha}(t)$ be measured voltage, electrode α and $F_{\mu \alpha}(t)$ be archetype waveform of type μ. Define the deviation $\quad[\delta \mathbf{V}]_{\alpha t}=V_{\alpha}(t)-A F_{\mu \alpha}\left(t-t_{1}\right)$

Then the probability that one spike, of type μ, is present is
$P($ spikes \mid data $)=K_{\mu} \exp \left[-\frac{\left(A-\gamma_{\mu}\right)^{2}}{2 \sigma_{\mu}^{2}}-\frac{1}{2}(\delta \mathbf{V})^{\mathrm{t}} \mathrm{C}^{-1}(\delta \mathbf{V})\right]$
which is a Gaussian in A. So it's easy to marginalize over A: just complete the square! [Here $K_{\mu}=P^{\text {cell }}(\mu) P^{\text {time }}\left(t_{1}\right)\left(2 \pi \sigma_{\mu}^{2}\right)^{-1 / 2}$ doesn't depend on A.]

Next, we sweep over a range of \mathbf{t} to find the best value of likelihood ratio for this spike type. [We only check \mathbf{t} values close to the peak of the event.]

Then we choose the winner among spike types.

JS Prentice, J Homann, KD Simmons, G Tkacik, V Balasubramanian, PCN, PLoS ONE 6(7): e19884 (2011).

[Nuts and Bolts]

Let $V_{\alpha}(t)$ be measured voltage, electrode α and $F_{\mu \alpha}(t)$ be archetype waveform of type μ. Define the deviation $\quad[\delta \mathbf{V}]_{\alpha t}=V_{\alpha}(t)-A F_{\mu \alpha}\left(t-t_{1}\right)$

Then the probability that one spike, of type μ, is present is
$P($ spikes \mid data $)=K_{\mu} \exp \left[-\frac{\left(A-\gamma_{\mu}\right)^{2}}{2 \sigma_{\mu}^{2}}-\frac{1}{2}(\delta \mathbf{V})^{\mathrm{t}} \mathrm{C}^{-1}(\delta \mathbf{V})\right]$
which is a Gaussian in A. So it's easy to marginalize over A: just complete the square! [Here $K_{\mu}=P^{\text {cell }}(\mu) P^{\text {time }}\left(t_{1}\right)\left(2 \pi \sigma_{\mu}^{2}\right)^{-1 / 2}$ doesn't depend on A.]

Next, we sweep over a range of t to find the best value of likelihood ratio for this spike type. [We only check \mathbf{t} values close to the peak of the event.]

Then we choose the winner among spike types.
If the winner's likelihood ratio is good enough (bigger than about 1), we say there's a spike here. That's the absolute criterion I promised earlier.

JS Prentice, J Homann, KD Simmons, G Tkacik, V Balasubramanian, PCN, PLoS ONE 6(7): e19884 (2011).

Test our assumptions

Can we really assume that the spikes from a particular cell differ only in overall amplitude? We took many events that contained a single spike of each type. Point by point in time, we subtracted the scaled shifted archetype and found the residual (on each channel).

Green: the archetype itself. Red: mean deviation from archetype.
Blue: std deviation from archetype.
We really do subtract spikes pretty completely.

Successfully fit overlaps

Successfully fit overlaps

Successfully fit overlaps

Top: Closeup of four channels, showing three fit archetypes found by the algorithm.
Bottom: sum of those fits (color) versus actual data (black).

Interpret

Each cell has a receptive field...

... and they tile the whole visual field. MEA recording is high throughput: We got dozens of cells all at once. Here are cells from just one functional group, "on cells." Each putative receptive field is a single connected region of image space.

Region of retina responded to by ganglion cell \#1, etc.

KD Simmons, JS Prentice, G Tkacik, J Homann, PCN, V Balasubramanian, submitted.

Receptive fields

Once you've got the spike trains, you can find receptive fields etc. Here's a typical spike-triggered average.

How interesting--guinea pig retina has a lot of these highly anisotropic receptive fields. The "surround" doesn't surround the "center"!

Receptive fields

Once you've got the spike trains, you can find receptive fields etc. Here's a typical spike-triggered average.

How interesting--guinea pig retina has a lot of these highly anisotropic receptive fields. The "surround" doesn't surround the "center"!

Receptive fields

Once you've got the spike trains, you can find receptive fields etc. Here's a typical spike-triggered average.

How interesting--guinea pig retina has a lot of these highly anisotropic receptive fields. The "surround" doesn't surround the "center"!

Takehome Part III

I described how we identify the individual ganglion cell signals from a hash of noise and overlapping real signals:

Takehome Part III

I described how we identify the individual ganglion cell signals from a hash of noise and overlapping real signals:

Full circle

\author{
Medical tests
 ```
tests

```
}

OK, I was a scatterbrain and gave you three talks. But wait -- if I can fill in the spaces

Changepoint
Analysis

\title{
Full circle
}

OK, I was a scatterbrain and gave you three talks. But wait -- if I can fill in the spaces
Medical tests


Full circle


OK, I was a scatterbrain and gave you three talks. But wait -- if I can fill in the spaces

\title{
Full circle
}

OK, I was a scatterbrain and gave you three talks. But wait -- if I can fill in the spaces

Medical tests


Theory can cut across apparently different kinds of experiment, offering useful methods to one domain from another without having to reinvent everything.

\section*{Wait, there's more}


\section*{Wait, there's more}


\section*{Wait, there's more}


\section*{Wait, there's more}


There is something weirdly -- unreasonably -- effective about approaching biological systems with a physical model. I don't understand why. I don't need to understand why.

\section*{Go long}

\section*{Go long}

Often, when we want to justify theory, we scratch our heads and say, "Well Hodgkin and Huxley was a big deal."

\section*{Go long}

Often, when we want to justify theory, we scratch our heads and say, "Well Hodgkin and Huxley was a big deal."
Indeed. But that sort of cherry-picking approach can leave the impression that theory is something that happens every 50 years or so. It's also too reverent.

\section*{Go long}

Often, when we want to justify theory, we scratch our heads and say, "Well Hodgkin and Huxley was a big deal."
Indeed. But that sort of cherry-picking approach can leave the impression that theory is something that happens every 50 years or so. It's also too reverent.

My point so far is that theory is needed every day. It's our microscope; our Geiger counter; it helps us to see the invisible.

\section*{Go long}

Often, when we want to justify theory, we scratch our heads and say, "Well Hodgkin and Huxley was a big deal."
Indeed. But that sort of cherry-picking approach can leave the impression that theory is something that happens every 50 years or so. It's also too reverent.

My point so far is that theory is needed every day. It's our microscope; our Geiger counter; it helps us to see the invisible.
To emphasize that, I didn't select famous examples; instead I have told you about the two things I happen to be working on right now (a random choice, you'll agree).

\section*{Go long}

Often, when we want to justify theory, we scratch our heads and say, "Well Hodgkin and Huxley was a big deal."
Indeed. But that sort of cherry-picking approach can leave the impression that theory is something that happens every 50 years or so. It's also too reverent.

My point so far is that theory is needed every day. It's our microscope; our Geiger counter; it helps us to see the invisible.
To emphasize that, I didn't select famous examples; instead I have told you about the two things I happen to be working on right now (a random choice, you'll agree).

Another context in which theory enters laboratory discussions is, " H theory to get this thing published. Go do some theory, run some ANOVA, whatever."

\section*{Go long}

Often, when we want to justify theory, we scratch our heads and say, "Well Hodgkin and Huxley was a big deal."
Indeed. But that sort of cherry-picking approach can leave the impression that theory is something that happens every 50 years or so. It's also too reverent.

My point so far is that theory is needed every day. It's our microscope; our Geiger counter; it helps us to see the invisible.
To emphasize that, I didn't select famous examples; instead I have told you about the two things I happen to be working on right now (a random choice, you'll agree).

Another context in which theory enters laboratory discussions is, " H theory to get this thing published. Go do some theory, run some ANOVA, whatever."
I'd just like to suggest that this attitude, though common, misses out on some of what theory can do for you. Particularly, a physical model can give a lot of dividends.

\section*{Go long}

Often, when we want to justify theory, we scratch our heads and say, "Well Hodgkin and Huxley was a big deal."
Indeed. But that sort of cherry-picking approach can leave the impression that theory is something that happens every 50 years or so. It's also too reverent.

My point so far is that theory is needed every day. It's our microscope; our Geiger counter; it helps us to see the invisible.
To emphasize that, I didn't select famous examples; instead I have told you about the two things I happen to be working on right now (a random choice, you'll agree).

Another context in which theory enters laboratory discussions is, " H theory to get this thing published. Go do some theory, run some ANOVA, whatever."
I'd just like to suggest that this attitude, though common, misses out on some of what theory can do for you. Particularly, a physical model can give a lot of dividends.

We like to teach famous success stories in science, but we don't always remember to present them as showcases of the utility of physical modeling.

\section*{Thanks}


University of Pennsylvania

For these slides see:
www.physics.upenn.edu/~pcn

\section*{Thanks}


University of Pennsylvania


NSF DMR, BIO, IBN


NSF NSEC


National Eye Institute Training grant


Computational Neuroscience
Training grant

For these slides see: www.physics.upenn.edu/~pen```


[^0]:    Thursday, March 15, 2012

