cal W.́n

Aephraim M. Steimberg

Centre for Q. Info. \& Q. Control Institute for Optical Sciences Dept. of Physics, U. of Toronto

University of Forento
Jan 2012

The morals of the story

1 Quantum Measurement is much richer than the textbooks acknowledge
2 Different sorts of Q.Msmt's prove useful for different real-world tasks

Main topics:

- Optimal state discrimination
(what's the best way to tell which of two quantum states you have?)
- Generalized quantum measurements
- Weak measurement
- Can we talk about the past in quantum mechanics?
- ("Interaction-free" measurement, Hardy's Paradox, trajectories in two-slit interferometers, \& more)
- Perhaps a few words on applications of measurement (eg quant. info)
- Post-selection as an effective nonlinearity (logic gate)
- Entangled states for phase super-resolution \& their tomography

DRAMATIS PERSONTE

Toronto quantum optics \& cold atoms group:
Postdoc: Alex Hayat
Optics: Xingxing Xing Lee Rozema Greg Dmochowski Dylan Mahler Amir Feizpour Zachary Vernon Lee Liu
$\begin{array}{llcl}\text { Atoms: } & \text { Rockson Chang } & \text { Chao Zhuang } & \text { Matin Hallaji } \\ & \text { Paul Godin } & \text { Shreyas Potnis } & \text { Ramon Ramos }\end{array}$
Some alums: Kevin Resch, Jeff Lundeen, Krister Shalm, Rob Adamson, Stefan Myrskog, Jalani Kanem, Ana Jofre, Chris Ellenor, Samansa Maneshi, Chris Paul, Reza Mir, Sacha Kocsis, Masoud Mohseni, Zachari Medendorp, Ardavan Darabi, Yasaman Soudagar, Boris Braverman, Sylvain Ravets, Max Touzel, Julian Schmidt, Xiaoxian Liu, Timur Rvachov,Luciano Cruz, Morgan Mitchell,...

Some helpful theorists:

Daniel James, Pete Turner, Robin Blume-Kohout, Chris Fuchs, Howard Wiseman, János Bergou, John Sipe, Paul Brumer, Michael Spanner...

QuickTime ${ }^{T M}$ and a

Distinguishing the indistinguishable...

How to distinguish non-orthogonal states optimally?

The view from the laboratory:

[see,yegd KwSumsdibRergoultand M. Hillery, Phys.
 are three possible results: (1), (2), and ("I don't know"). Therefore, to discriminate between two non-orth. states, we need to use an expanded (3D or more) system. To distinguish 3 states, we need 4D or more.

The geometric picture

Two non-orthogonal vectors No projective measurement can tell with certainty which we have; if one basis vector is orth. to 1 , the other cannot be orth. to 2 .

If these two (red) vectors are embedded in a 3-dimensional space, it becomes possible to find a pair of (green) orthogonal vectors each of which excludes one of the options! (But now there is a third axis: the z-axis is "inconclusive")

A test case

Consider these three non-orthogonal states:

$$
\left|\psi_{1}\right\rangle_{\text {in }}=\left(\begin{array}{c}
\sqrt{2 / 3} \\
0 \\
1 / \sqrt{3}
\end{array}\right) \quad ;\left|\psi_{2}\right\rangle_{\text {in }}=\left(\begin{array}{c}
0 \\
1 / \sqrt{3} \\
\sqrt{2 / 3}
\end{array}\right) ;\left|\psi_{3}\right\rangle_{\text {in }}=\left(\begin{array}{c}
0 \\
-1 / \sqrt{3} \\
\sqrt{2 / 3}
\end{array}\right)
$$

Projective measurements can distinguish these states with certainty no more than $1 / 3$ of the time.
(No more than one member of an orthonormal basis is orthogonal to two of the above states, so only one pair may be ruled out.)
But a unitary transformation in a 4D space produces:

$$
\left|\psi_{1}\right\rangle_{\text {out }}=\left(\begin{array}{c}
1 / \sqrt{3} \\
0 \\
0 \\
\sqrt{2 / 3}
\end{array}\right)
$$

$$
\left|\psi_{2}\right\rangle_{\text {out }}=\left(\begin{array}{c}
0 \\
1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right)
$$

$$
\left|\psi_{3}\right\rangle_{o u t}=\left(\begin{array}{c}
0 \\
-1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right)
$$

...and these states can be distinguished with certainty
up to 55% of the time

Experimental schematic

A 14-path interferometer for arbitrary 2 -qubit unitaries...

Success!

Nonorthogonal States

The correct state was identified 55% of the time--
Much better than the 33% maximum for standard measurements.
M. Mohseni, A.M. Steinberg, and J. Bergou, Phys. Rev. Lett. 93, 200403 (2004)

"Quantum Seeing in the Dark"

" Quantum seeing in the dark

(AKA: "Interaction-free" measurement, aka "Vaidman's bomb")
A. Elitzur and L. Vaidman, Found. Phys. 23, 987 (1993)
P.G. Kwiat, H. Weinfurter, and A. Zeilinger, Sci. Am. (Nov., 1996)
a collision ys single particle (photon, electron, etc.) is guarranted to trigger it. etector absent/netiectual:

Sy PBSZ tnat certain of the detector C fires but differ in their becaviour in no way other than that the will not blow up wen triggetretpr working:

Is there any way some of theBS with, at blowing them up?

1/4

D
1/4
\longleftrightarrow The bomb must be there... yet my photon never interacted with it.

Fanciful musing about this

Many feel that QM implies a tree falling in an empty forest makes no sounds.

Not only is this an inappropriate conclusion, but:

- QM says you can tell that a tree would have made a sound had it fallen, even if it doesn't fall!
- QM is not a theory of what happens, but of all the possible things which could happen.

Hardy's Paradox

(for Elitzur-Vaidman "interaction-free measurements")

Outcome	Prob
P \rightarrow_{+}afrongas	im/16
Dion and cas	4/16
G7 ${ }^{\text {and }}$ \%	9/16
D_{+}and D.	1/16
Betplosifithe both in, the have annih	4WMPre ated!

Can we talk about what goes on behind closed doors?

("Postselection" is the big new buzzword in QIP... but how should one describe post-selected states?)

Predicting the past...

A $+\mathbf{B}$

What are the odds that the particle was in a given box (e.g., box B)?
It had to be in B, with 100% certainty.

Conditional measurements (Aharonov, Albert, and Vaidman) AAV, PRL 60, 1351 ('88)

Prepare a particle in |i> ...try to "measure" some observable A... postselect the particle to be in |f>

Does <A> depend more on i or f, or equally on both?
Clever answer: both, as Schrödinger time-reversible.
Conventional answer: i, because of collapse.

Reconciliation: measure A "weakly." Poor resolution, but little disturbance.

(but how to determine?)

A (von Neumann) Quantum Measurement of A

Initial State of Pointer

Final Pointer Readout

Well-resolved states
System and pointer become entangled
Decoherence / "collapse"
Large back-action

A Weak Measurement of A

Initial State of Pointer

$\xrightarrow[\substack{\text { System-pointer } \\ \text { coupling }}]{\mathrm{H}_{\mathrm{int}}=g \mathrm{Ap}_{\mathrm{x}}}$

Final Pointer Readout

Poor resolution on each shot.
Negligible back-action (system \& pointer separable)
Strong: $\quad|\Psi\rangle_{s} \phi_{p}(x) \rightarrow \sum_{i} c_{i}\left|\psi_{i}\right\rangle_{s} \phi_{p}\left(x-g a_{i}\right)$
Weak: $\quad|\Psi\rangle_{s} \phi_{p}(x) \rightarrow|\Psi\rangle_{s} \phi_{p}\left(x-g\left\langle A_{s}\right\rangle\right)$

$$
\mathrm{A}_{w}=\frac{\langle\mathrm{f}| \mathrm{A}|\mathrm{i}\rangle}{\langle\mathrm{f} \mid \mathrm{i}\rangle}
$$

Back to Hardy's Paradox...

Interpretational digression

Note: Hardy's reading of his paradox (filtered through me) is that it's simply not fair to ascribe real values to potential measurements, without knowing which sets of measurements are really going to be done -- quantum mechanics is known to be contextual.

Weak measurements, on the other hand, are non-contextual, and allow one to ask what properties a system had before post-selection.

What questions is one really allowed to ask?

Weak Measurements in Hardy's Paradox

But what can we say about where the particles were or weren't, once $D+\& D$ - fire?

Probabilities	e- in	e- out	
e+ in	0	1	1
e+ out	1	-1	0
	1	0	

and these are in fact the predictions for the weak values!
Y. Aharonov, A. Botero, S. Popescu, B. Reznik, J. Tollaksen, PLA 301, 130 (2002); quant-ph/0104062

How to measure (weak) joint probabilities?
 Resch \&Steinberg, PRL 92,130402 ('04)

Use two pointers and couple individually to the two observables of interest ("A" and "B"); then use their correlations to draw conclusions about P_{AB}.

$$
\mathrm{H}_{\mathrm{int}}=\mathrm{g}_{\mathrm{A}}|\mathrm{~A}\rangle\langle\mathrm{A}| \mathrm{p}_{\mathrm{x}}+\mathrm{g}_{\mathrm{B}}|\mathrm{~B}\rangle\langle\mathrm{B}| \mathrm{p}_{\mathrm{y}}
$$

We have shown that the real part of $\mathrm{P}_{\mathrm{ABW}}$ can be extracted from such correlation measurements:

$$
\operatorname{Re}\left(\mathrm{P}_{\mathrm{ABW}}\right)=\frac{2\langle\mathrm{xy}\rangle}{\mathrm{g}_{\mathrm{A}} \mathrm{~g}_{\mathrm{B}} \mathrm{t}^{2}}-\operatorname{Re}\left(\mathrm{P}_{\mathrm{AW}}^{*} \mathrm{~B}_{\mathrm{BW}}\right)
$$

Using a "photon switch" to implement Hardy's Paradox

Weak Measurements in Hardy's Paradox

 Ideal Weak Values| | $\mathrm{N}\left(\mathrm{I}^{-}\right)$ | $\mathrm{N}\left(\mathrm{O}^{-}\right)$ | |
| :---: | :---: | :---: | :--- |
| $\mathrm{N}\left(\mathrm{I}^{+}\right)$ | 0 | 1 | 1 |
| $\mathrm{~N}\left(\mathrm{O}^{+}\right)$ | 1 | -1 | 0 |
| | 1 | 0 | |

Experimental Weak Values ("Probabilities"?)

	$\mathrm{N}\left(\mathrm{I}^{-}\right)$	$\mathrm{N}\left(\mathrm{O}^{-}\right)$	
$\mathrm{N}\left(\mathrm{I}^{+}\right)$	0.243 ± 0.068	0.663 ± 0.083	0.882 ± 0.015
$\mathrm{~N}\left(\mathrm{O}^{+}\right)$	0.721 ± 0.074	-0.758 ± 0.083	0.087 ± 0.021
	0.925 ± 0.024	-0.039 ± 0.023	

J.S. Lundeen and A.M. Steinberg, Phys. Rev. Lett. 102, 020404 (2009); also Yokota et al., New. J. Phys. 11, 033011 (2009).

Can we understand what is really happening physically?

$$
\begin{aligned}
& \left\langle\hat{N}\left(M_{P}\right) \hat{N}\left(M_{E}\right)\right\rangle_{W}=g^{-2} \operatorname{Re}\left\langle\hat{\sigma}_{z P}^{-} \hat{\sigma}_{z E}^{-}\right\rangle, \quad-\frac{R_{\circlearrowright}+R_{\circlearrowright}-R_{\circlearrowright}-R_{\circlearrowright \bigcup}}{R_{\circlearrowright}+R_{\circlearrowright}+R_{\circlearrowright}+R_{\circlearrowright \bigcup}},
\end{aligned}
$$

TABLE I. The measured coincidence rates needed to determine the weak values.

What is the meaning of the negative joint occupation? Recall that the joint values are extracted by studying the polarization rotation of both photons in coincidence. Consider a situation in which both photons always simultaneously passed through two particular arms. When a polarization rotator is placed in each of these arms, it
would tend to cause their polarizations to rotate in a correlated fashion; when P was found to have 45° polarization, E would also be more likely to be found at 45° than -45°. Experimentally, we find the reverse-when P is found to have 45° polarization, E is preferentially found at -45° (and vice versa), as though it had rotated in the direction opposite to the one induced by the physical wave plate. As in all weak-measurement experiments, a negative

Some other experiments using weak measurement to study foundations...

Which-path controversy

(Scully, Englert, Walther vs the world?)

[Reza Mir et al., New. J. Phys. 9, 287 (2007)]

Which-path measurements destroy interference.
This is usually explained via measurement backaction \& HUP. Suppose we use a microscopic pointer. Is this really irreversible, as Bohr would have all measurements? Need it disturb momentum?
Which is «more fundamental» - uncertainty or complementarity?

Weak measurements to the rescue!

To find the probability of a given momentum transfer, measure the weak probability of each possible initial momentum, conditioned on the final momentum observed at the screen...

Convoluted implementation...

The distribution of the integrated momentum transfer

R. Mir et al., New. J. Phys. 9, 287 (2007)

Note: the distribution extends well beyond \mathbf{h} / \mathbf{d}.

On the other hand, all its moments are (at least in theory, so far) 0 .

The former fact agrees with Walls et al; the latter with Scully et al.

For weak distributions, they may be reconciled because the distributions may take negative values in weak measurement.

Can we follow trajectories in the interferometer too?

Bohmian trajectories:

QuickTime ${ }^{T M}$ and a decompressor
are needed to see this picture.

Prediction: Weak measurement will reveal these trajectories [Wiseman New. J. Phys. 9, 165 (2007)]

Weakly measuring photon trajectories

Imaging a chosen plane on a CCD camera allows us to postselect on position. The pol. rotation at each x is measured by subtracting two copies of the fringe pattern, one for \mathbf{H} and one for V.

Some early data

QuickTime ${ }^{\text {TM }}$ and a YUV420 codec decompressor are needed to see this picture.

Reconstructed trajectories

QuickTime ${ }^{\text {TM }}$ and a
are needed to see this picture.
S. Kocsis et al.,

Science 332, 1170 (2011)

Using measurement to make entanglement; and using entanglement to make better measurements...

Jon Dowling's Slide of Magic BS

N
Photons

$$
\left.\left.|N\rangle_{A}\right|^{0}\right\rangle_{B}+e^{i N \varphi}|0\rangle_{A}|N\rangle_{B}
$$

N-Photon
Detector

$$
\begin{aligned}
& \frac{1+\cos \varphi}{2} \text { ur } \\
& \frac{1+\cos N \varphi}{2}
\end{aligned}
$$

$$
\varphi=k x
$$
 $$
\Delta \varphi: 1 / \sqrt{ } N \rightarrow 1 / N
$$

Highly number-entangled states ("3003" experiment).

M.W. Mitchell et al., Nature 429, 161 (2004)

States such as $|\mathbf{N}, 0>+| 0, N>($ ("N00N" states) could revolutionize metrology (from atomic clocks to optical-interferometric sensing), and have been proposed for lithography as well.
But how to make them?

Important factorisation:

$$
\left(a^{\dagger} 3+b^{\dagger} 3\right)=\left(a^{\dagger}+b^{\dagger}\right)\left(a^{\dagger}+e^{2 \pi i / 3} b^{\dagger}\right)\left(a^{\dagger}+e^{-2 \pi i / 3} b^{\dagger}\right)
$$

A"noon" state A really odd beast: one 0^{0} photon, one 120° photon, and one 240° photon... but of course, you can't tell them apart, let alone combine them into one mode!

Trick \#1

How to combine three non-orthogonal photons into one spatial mode?

Yes, it's that easy! If you see three photons out one port, then they all went out that port.
$\xrightarrow{\longrightarrow}$ Post-selective nonlinearity

Cf. "KLM": measurement itself can act as an entangling logic gate!

INPUT STATE $\mathrm{a}|0>+\mathrm{b}| 1>+\mathrm{c} \mid 2>$

OUTPUT STATE
$a|0>+b| 1>-c \mid 2>$

Knill, Laflamme, Milburn Nature 409, 46, (2001), and others after; cf. also Raussendorf \& Briegel, Phys Rev Lett 86, 5188 (2001).

Making triphoton states...

In HV basis, $\mathbf{H}^{2} \mathrm{~V}+\mathbf{H V}^{2}$ looks "number-squeezed"; in RL basis, phase-squeezed.

It works!

Singles:

Triple coincidences:

Triples (bg subtracted):

M.W. Mitchell, J.S. Lundeen, and A.M. Steinberg, Nature 429, 161 (2004)

A glimpse at a few other things in progress...

Is weak measurement good for anything practical?
 $$
\mathrm{A}_{w}=\frac{\langle\mathrm{f}| \mathrm{A}|\mathrm{i}\rangle}{\langle\mathrm{f} \mid \mathrm{i}\rangle}
$$
 may be very big if the postselection (<f|i>) is very unlikely...

QuickTime ${ }^{\text {TM }}$ and a
decompressor
are needed to see this picture.

Can one photon act like many photons?

<n> ${ }_{w}$ may be >> 1 .

When the post-selection succeeds, the phase shift on the probe may be much larger than the phase shift due to a single photon -- even though there only ever is at most one signal photon!

Measuring the phase of an atom

Measuring the tunneling time?

The morals of the story, again

1. There are many different "quantum measurements"! And they are good for something.
2. Post-selected systems often exhibit surprising behaviour which can be probed using weak measurements.
3. These weak measurements may "resolve" various paradoxes... admittedly while creating new ones (negative probability)!
4. All of the claims in Hardy's "paradox" are borne out by weak measurement.
Retrodiction (and "intradiction," to mangle some jargon) is alive and well in quantum mechanics.
5. A postselected particle can be certain to have been in each of two places at the same time, yet can never be in both at the same time.
6. A series of tunneling-time experiments is still under preparation at U of T .
