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The Present-day Earth’s Surface Motion
— Plate Tectonics (1960°s)
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The dynamic Earth — plate tectonics and the mantle structure

Vs at 2300 km depth from S20RTS
[thsema etal., 1999]

SB10L18 by Masters et al. [2000]



African and Pacific Superplumes
-- Spherical harmonic degree-2 Structure

Shear-wave anomalies at 2300 km depth _ _ _
from S20RTS [Ritsema et al., 1999] Spherical harmonic functions Y (6,¢)
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Deqree-2 structure:

Dziewonski et al. [1984], van der Hilst
et al. [1997], Masters et al. [1996,
2000], Romanowicz and Gung [2002],
and Grand [2002].

Degree 3:



The Earth’s gravity (geoid) anomalies

Geoid anomalies: a measure of gravitational potential
anomalies at the Earth’s surface.

GM L ! :
N(O,9)=——{ X X[Cy cos(mp)+ Sy, sin(m@)] B, (cos6)}
Rg 1=2m=0

Long-wavelength geoid (degrees I=2 and 3)
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What controls the long-wavelength geoid anomalies?
-- (density/thermal) structure in the lower mantle

Vs at 2300 km depth from S20RTS
Long-wavelength geoid (degrees 2-3) [Ritsema et al., 1999]

-125  -75 -25 25 73 125 (m) -1.5 -0.5 0.0 0.5 1.5 (%)

Hager et al. [1985] pointed out that the geoid at degrees 2 and 3 is
controlled by the lower mantle seismic structure (i.e., seismically slow
anomalies below Africa and Pacific are responsible for the broad geoid
highs in these two regions) (Also Forte & Peltier, 1987).



Degree-2 Structure in the Lower Mantle —
A Dynamic/Convective Origin
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Origin: Controlled by plate motion and its history
[Hager & O’Connell, JGR, 1981; Bunge et al.,
Science, 1998].

Engebretson et al. [1992]; Lithgow-Bertelloni &
Richards [1998].

[Mcmara & Zhong, Nature, 2005]




Supercontinent Pangea (330 -- 180 Ma)
and Supercontinent Rodinia (900 -- 750 Ma)

Early Carboniferous 356 Ma

Late Jurassic

Early Triassic 237 Ma

st e 8 [Lietal., 2008; Hoffman, 1991; Dalziel,
[Smith et al., 1982, and Scotese, 1997] 1991; Torsvik, 2003].



Supercontinent events dominate tectonics and magmatism

Intraplate volcanism (i.e., hot-spot and large ~—
igneous provinces or super-volcanoes)
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Two types of volcanism: arc and intraplate

Arc

Zouth American Flate

Wazca Plate

formed in the last 1 Mal!

Lithosphere
Acsthenosphere

Hawaii volcanoes



Large igneous provinces (LIPs) or super-volcanoes
— A special type of intraplate volcanism

Covering ~4x108 km? (or 400 times of
the big island of Hawaii) and formed
within 1-2 Ma at ~250 Ma ago.
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Distributions of LIPs and their relations to African and Pacific

superplumes and supercontinent Pangea

Torsvik et al. [2008]
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<250 Ma

Summary of the basic observations
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Seismic structure (African and
Pacific two antipodal slow
anomalies surrounded by subducted
slabs).

The African and Pacific anomalies
correlate well with the gravity
anomalies at degrees 2-3.

Supercontinent cycles (Pangea and
Rodinia). Surrounded by
subduction zones (i.e., convergence
zones). Only existed for 150 Ma
before the breakup.

Spatial and temporal distributions
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o

Some first-order questions

Why should a supercontinent form? Why are
supercontinent events cyclic?

How do we understand the present-day seismic
structure (e.g., two antipodal African and Pacific
slow anomalies) and supercontinent events in a
general framework?

Are those mantle structures stationary with time?

How are mantle structure evolutions related to other
geophysical and geological observations?

Thermal convection in the mantle is the
key to all these questions.



Thermal convection 1n the mantle
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Degree-1 or hemispherically asymmetric structures
for the other planetary bodies?

Mare Basalt Volcanism on the Moon

Nearside Farside

Icy satellite Enceladus



How to generate degree-1 mantle convection?
-- the effect of a weak upper mantle

Temperature 1/30 1 Viscosity
100 km g 100 km b
. 670 km
Solidus (melting
curve)
CMB ~ Geotherm CMB -
v Depth v Depth

Constrained by postglacial rebound
and gravity observations [Hager,
1991; Mitrovica et al., 2007]

A weak upper mantle may increase convective wavelengths up to
degree 6 [Jaupart & Parsons, 1985; Zhang & Yuen, 1995; Bunge et
al., 1996].



Degree-1 mobile-lid convection
with realistic mantle viscosity

n=n,exp[E(0.5-T)]

1/30 1 o
x30 X1
670 km - X30L.
CMB _
v Depth
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Movie 1: Evolving to degree-1 convective structure

Viscosity: n(T, depth).

Niitn ~ 300N,
& Mim ™ 301']um

i
||||||'|'||||||||||

-2 -1 0 1 2
log10(viscosity)

Independent of convective vigor, heating mode, & initial conditions.
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Movie 2: A supercontinent turns initially degree-1 to
degree-2 structures




An 1-2-1 model for the evolution of mantle structure modulated by
continents [Zhong et al., 2007]

Degree-1 convection with one major
upwelling system.

1 forming a supercontinent

Degree-2 convection with two antipodal
major upwelling systems, including one
under the supercontinent.

breaking up the supercontinent

Mantle structure: 1->2->1 cycle.
At the surface: supercontinent cycle.




Frequency of magmatism events/100 Ma

Implications of the 1-2-1 model

0.0

Pangaea break-up
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» Large igneous provinces: reduced level during the
supercontinent assembly, but enhanced after.

» The African and Pacific superplumes are antipodal

to each other (i.e., degree-2).

» The African anomalies are younger than Pangea
(330 Ma), but the Pacific anomalies are older.
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Testing the 1-2-1 model

How? Using present-day seismic structure, and geological observations
of continental motion for the past 500 Ma.
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[Scotese, 1997]
For the last 119 Ma, Lithgow-Bertelloni & Richards [1998]



Testing the 1-2-1 model

How? Using present-day seismic structure, and geological observations
of continental motion for the past 500 Ma.

458-390 Ma 255-195 Ma
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Our model is NOT a fully
dynamic model with plate
tectonics, which is a great
challenge in mantle dynamics
[Lowman, 2011].

For the last 119 Ma, Lithgow-Bertelloni & Richards [1998]



Comparison with present-day seismic structure

S20RTS @2750 km depth

_S2RTS
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spherical harmonic degree

% Shear wave variation
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5 10
spherical harmonic degree

15

Zhang et al [2010]



Time evolution of mantle structure with prescribed
surface plate motions since the Paleozoic

2700 km depth




Predicted present-day seafloor age, surface heat
flux, bathymetry and dynamic topography

Seafloor age

Heat flux
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Dynamic topography

« Topography generated by the dynamics of mantle flow
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Predicting history of continental vertical motions
(Zhang et al., 2011a)

Temperature @ 2700 km depth
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Dynamic topography (km)



Comparing predicted continental vertical motions with
burial/unroofing history from geochronology
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Magnetic stripes on seafloor and magnetic polarity reversals

mante _

A key evidence for plate tectonics



Magnetic polarity reversals and superchrons
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Controls of core-mantle boundary (CMB)
heat flux on magnetic reversal frequency

i

Olson et al. (2010) reported from dynamo simulation (magnetohydrodynamics
or MHD) that stable magnetic polarity is associated with relatively small CMB
heat flux in equatorial regions.



Predicted time evolution of CMB heat flux
[Zhang & Zhong, 2011Db]
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Time evolution of equatorial CMB heat flux

a) 100
;g

= 90 =

E

S 80

=

|

E -

o

= 70=

=

o

= Kaiman Reversal Cretaceous Normal
=3 Superchron Superchron

’_u 60 I T 1] T T | T T I 1 T | T 1 T T | T T T 1 | T 1 I T 1 L I T 1] 1 1]

-600 -550 -500 -450 -400 -350 -300 -250 -200 -150 -100 -50 0

The CMB heat flux maps are used by Olson’s group for dynamo modeling in a
major NSF-funded collaborative project — Open Earth Systems.



— Open Earth Systems

¢ § :. Google
OPEN
EARTH
S Y S T E M S People Events/News Projects Outreach

Atmosphere

Open Earth Systems is a research project funded by the Frontiers in Earth Upcoming Events & News
System Dynamics Program of the National Science Foundation. The goals of . ;
. April 22-27:
Open Earth Systems are to interface state-of-the-art models of the atmosphere, European Geosciences Union
ocean, crust, mantle, and core to better understand the causes and consequences General Assembly 2012
of critical events in Earth's history. VI ATetra
Participating institutions are Johns Hopkins University. University of Colorado Boulder, Yale University. and July1-6: .
Universi% of California Berkeley. Open Earth Systems research projects include the convective history of the SEDI 2012 Symposium
mantle, plate generation dynamics, magma production and transport, evolution of the geodynamo, evolution of the Leeds, United Kingdom

ocean-atmosphere, and evolution of the crust through time.
July1 - Augustio:



Summary

« Proposed an 1->2->1 cyclic model for the evolution of
mantle structure modulated by supercontinent cycle.

« Built a mantle evolution model for the last 500 Ma that is
constrained by plate motion history, present-day seismic
structures, and continental craton vertical motions.

« Implications for seismic structures (the African and Pacific
superplumes — the African superplume is younger!), plume-
related volcanism, magnetic polarity reversals
(superchrons), and Earth system dynamics.









Time evolution of global surface and CMB heat flux
[Zhang & Zhong, 2011Db]
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Results: Thermo-chemical structures at different times

330 Ma (i.e., when Pangea was formed)

2700 km depth




Comparison with present-day seismic structure

S20RTS @2750 km depth

_S2RTS

1

1300

depth (km)

1 5 . ll:_l 15
spherical harmonic degree

% Shear wave variation

@2700 km depth

present-day

5 10
spherical harmonic degree

15

Zhang et al [2010]
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Confirmation of Continental Drift from Paleo-
magnetism and Other Studies (1950°s-1960°s)

Rocky (Silicate)

_ Patrick Blackett
Keith Runcorn

Earth’s paleomagnetic field
recorded in (magnetized) rocks.
Metallic (Fe, Ni). Liquid outer core.

Dynamo action caused by Earth’s rotation
and convective motion in the outer core.



Magnetization of rocks
(actually minerals such as magnetite Fe,;O,)

Determine B field direction to get
paleo-latitude of the rock at the
time of magnetization.

30,000 years ago

Magnetization of rocks while being cooled below Curie
temperatures (500-900 °C).



Basic features of Supercontinents Pangea and Rodinia

Pangea [Scotese, 1997]

Early Triassic 237 Ma

»Cyclic process.

»Surrounded by subduction zones
(i.e., convergence zones).

» Centered at the equator before
the breakup.

»Only existed for 150 Ma before
the breakup.

» Tectonics (mountain building at
the formation and continental
rifting and magmatism at the
breakup).

> ...




Effects of a supercontinent after its formation

Add a supercontinent

Consequences of a supercontinent:

Formation of another upwelling system below the supercontinent,
largely in response to the circum-continent subduction.
Transformation from degree-1 to degree-2 structures.

Eventually breakup of the supercontinent.



Test 1: Always Degree-2? (Burke et al., 2008)

Using present-day modeled thermochemical
structure (degree-2) as initial condition.

& mwf ﬁfﬂﬂ ‘

-60 >



Test 2: Downwellings in the Pacific hemisphere?
After 220 Ma

Initial condition includes a downwelling
In the Pacific hemisphere.







=ES

(figure courtesy of Chuck Meertens, GEON)






Independent of initial conditions, internal
heating rate, and convective vigor

RaO.5:1.37xl06 Rao_5:l.37X107

X30

Average surface velocity:
~ 6 cm/year



Generation of long-wavelength mantle convection
from radially stratified mantle viscosity

Suggested by Jaupart & Parsons [1985] and Zhang & Yuen [1995]

Bunge et al. Stagnant-lid convection for Mars
[1996].

Largely at
degree 6 Roberts & Zhong [2004; 2006].

However, the exact mechanism is still an active research area [see Zhong &
Zuber, 2001; Lenardic et al., 2006; Zhang & Zhong, 2007].



Lithospheric viscosity also plays an important role

1/30 1

X30 viscosity increase at 670 100 km - > Ny
km depth but no lithosphere
670 km -
CMB
v Depth

Largely at I=6 Bunge et al. [1996].



Previous explanation for the lack of TPW for the last 56 Ma

Present day

2100 km

(|
O]
kY

Engebretson et al. [1992]; Lithgow-Bertelloni &
Richards [1998].

60 50 40 30 -20 10 0 10 20 30 40 50 €0
Geoid anomaly {m)

Richards et al. [1997]; Steinberger & O’Connell [1997]



Mantle convection and structure and surface plate motion

African and Pacific super-plumes Pangea [Scotese, 1997]
(antipodal) [Ritsema et al., 1999]

Early Triassic 237 Ma

Engebretson et al. [1992]; Lithgow-Bertelloni & [Lithgow-Bertelloni & Richards, 1998].
Richards [1998].



Observational evidence for a weak asthenosphere
2) Post-glacial rebound [Peltier, 1976, 1998; Forte and Mitrovica, 1997].
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Paulson, Zhong & Wabhr [in press, 2007].



Degree-1 convection as a “ground” state?

Kinematic models

[Evans, 2003]

provided that the upper mantle is X30
less viscous than the lower mantle
[Hager, 1984] and X200 less viscous than
lithosphere [e.g., England & Molnar, 1997].

Degree-1 convection is a “ground” state
that the mantle always tends to.

Since the models exclude continents, we
propose that when continents are
sufficiently scattered and do not affect
global mantle flow, the mantle should go
to this “ground” state.

The degree-1 convection leads to
supercontinent formation!



Mobile-lid mantle convection in 3-D spherical shell

1. Heated both within the mantle (e.g., radiogenic heating) and from the
below (i.e., core cooling).

2. Temperature- and depth-dependent viscosity: n=n,exp[E(0.5-T)].
Activation energy E is such that viscosity varies by 102 for non-dimensional
temperature T varying from 0 at the surface to 1 at the CMB.

3. Use a 3D spherical convection code CitcomS that is extensively
benchmarked [Zhong et al., 2000; also CIG].
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Supercontinent cycles, true polar wander, and
very long-wavelength mantle convection

Shijie Zhong

Department of Physics
University of Colorado at Boulder
U.S.A.

See Zhong et al. [EPSL, 2007]



Time evolution of mantle structure for another case
(higher Ra and initially random perturbation) (Movie 2)

Symmetric
growth of the
downwelling.




Evidence for compositional anomalies at the base of the mantle

African chemical ridge?

Anti-correlation between shear
and bulk sound speeds
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Distinct composition for African and Pacific superplumes

African chemical pile

Wen et al., [2001]; Ni et al., [2002];

Anti-correlation between shear
and bulk sound speeds He & Wen [2010].
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Wang & Wen [2004]
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Topography and lithosphere age




Model predictions of topography and dynamic topography
Topography from the top 200 km

Dynamic topography
(i.e., from buoyancy
below 200 km depth)

Zhang et al. (2011a)



Global surface and CMB heat flux [Zhang & Zhong, 2011b]

Present-day CMB heat flux
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