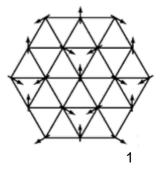
# Quantum Choreography: Exotica inside Crystals

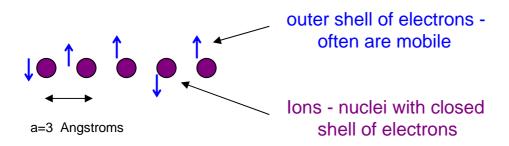
U. Toronto - Colloquia 3/9/2006

J. Alicea, O. Motrunich, T. Senthil and MPAF


• Electrons inside crystals: Quantum Mechanics at room temperature

 Quantum Theory of Solids: Band Theory Metals/Insulators/Semiconductors ...

Electrons do their own thing...


• Need revisiting...

Electrons are cooperative "dancers" - exotic quantum dancers



#### **Electrons in Solids:**

Quantum mechanics at room temperature -



Energy Scales:

Kinetic energy: Quantum zero point motion  $E_{ke} \sim \frac{\hbar^2}{ma^2} \sim eV \sim 10^4 K >> T_{room}$ 

Coulomb Interaction: between electrons and ions

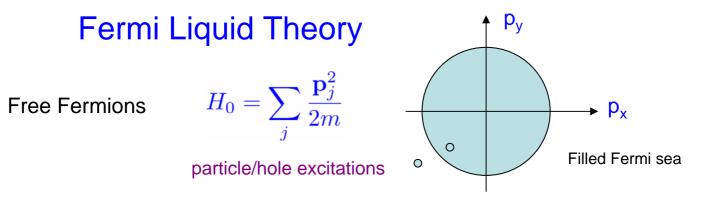
$$E_{coul} \sim \frac{e^2}{a} \sim eV > T_{room}$$

Interest: Quantum Dynamics of 10<sup>23</sup> electrons

**Quantum Ground State Phases** 

### Quantum Theory of Solids: Standard Paradigm

Landau Fermi Liquid Theory


Accounts for electronic behavior of simple metals, insulators and semiconductors

QuickTime?and a TIFF (Uncompressed) decompressor are needed to see this picture.

#### Landau Theory of Phase Transitions

Provides a framework to understand broken symmetry phases of metals, including -

- superconductors,
- ferromagnets,
- antiferromagnets,
- charge density waves,
- spin density waves,...



**Interacting Fermions** 

$$H = \sum_{j} \frac{\mathbf{p}_{j}^{2}}{2m} + \sum_{ij} \frac{e^{2}}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$

Retain a Fermi surface

Luttingers Thm: Volume of Fermi sea same as for free fermions

Particle/hole excitations are long lived near FS

$$\frac{1}{\tau} \sim (E - E_F)^2$$

Vanishing decay rate

### Add periodic potential from ions in crystal

$$H = \sum_{j} \frac{\mathbf{p}_{j}^{2}}{2m} + \sum_{ij} \frac{e^{2}}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} + \sum_{i} V(\mathbf{r}_{i})$$

- Plane waves become Bloch states
- Energy Bands and forbidden energies (gaps)
- Band insulators: Filled bands
- Metals: Partially filled highest energy band

Even number of electrons/cell - (usually) a band insulator Odd number per cell - always a metal QuickTime?and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTimeTand J TEF (Uncompressed) decompress are needed to see this picture Landau Theory of Phase Transitions

Order Parameter: A local observable, non-zero in one phase and zero in all others

Example: Electron Hamiltonian in metal  $\mathcal{H} = \int d\mathbf{r} c_{\alpha}^{\dagger}(\mathbf{r}) [-\nabla^2/2m] c_{\alpha}(\mathbf{r}) + \mathcal{H}_{int}$ 

• Superconductor  $\psi(\mathbf{r}) = \mathbf{c}_{\uparrow}(\mathbf{r})\mathbf{c}_{\downarrow}(\mathbf{r})$ • Ferromagnet  $\mathbf{S}(\mathbf{r}) = \mathbf{c}_{\alpha}^{\dagger}(\mathbf{r})\sigma_{\alpha\beta}\mathbf{c}_{\beta}(\mathbf{r})$ 

Landau-Ginzburg-Wilson "Free energy" functional:

$$\mathcal{H}_{LGW} = \int d\mathbf{r} [|\nabla \psi|^2 + r|\psi|^2 + u\psi|^4 + \dots]$$

### **Band Theory**

#### • s or p shell orbitals : Broad bands

Simple (eg noble) metals: Cu, Ag, Au - 4s1, 5s1, 6s1: 1 electron/unit cell Semiconductors - Si, Ge - 4sp3, 5sp3: 4 electrons/unit cell Band Insulators - Diamond: 4 electrons/unit cell

Band Theory Works

Breakdown

• d or f shell electrons: Very narrow "bands"

Transition Metal Oxides (Cuprates, Manganites, Chlorides, Bromides,...): Partially filled 3d and 4d bands

Rare Earth and Heavy Fermion Materials: Partially filled 4f and 5f bands

Electrons can ``self-localize"

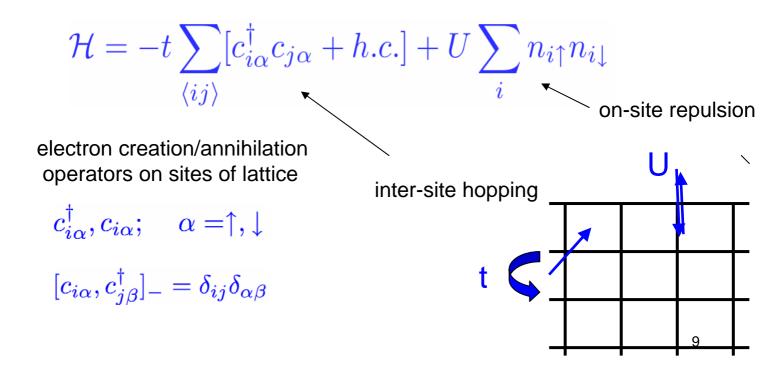
### **Electron "Fractionalization"**

What is it?

Quantum Ground state of strongly correlated electron system which supports "particle-like" excitations which carry fractional quantum numbers

Not "built" from electrons: Q=e, s=1/2

Where does it occur?


- 1d systems of electrons: quantum wires, Carbon nanotubes
- 2d electrons in very strong magnetic fields: Fractional QHE
- Other 2d or 3d systems in ordinary crystals????

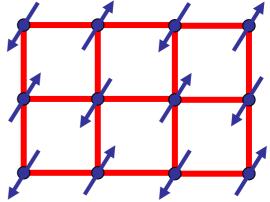


### Mott Insulators:

Insulating materials with an odd number of electrons/unit cell Correlation effects are critical!

Hubbard model with one electron per site on average:



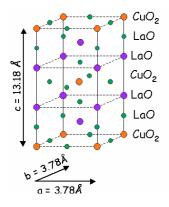

## **Spin Physics**

For U>>t expect each electron gets self-localized on a site (this is a Mott insulator)

Residual spin physics:

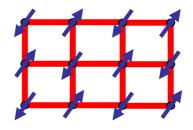
 $ec{S}_i; \quad [S_i^\mu, S_j^
u] = i \delta_{ij} \epsilon_{\mu
u\lambda} S_i^\lambda$ 

s=1/2 operators on each site



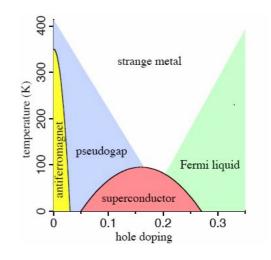

#### Heisenberg Hamiltonian:

$$H_{spin} = J \sum_{\langle ij 
angle} ec{S}_i \cdot ec{S}_j$$

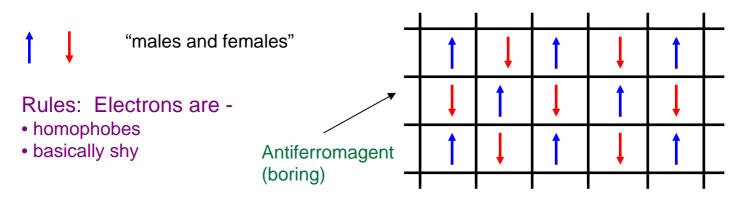

Antiferromagnetic Exchange $J\sim t^2/U$ 

#### **High Temperature Superconductors**




La<sub>2-x</sub>Sr<sub>x</sub>CuO<sub>4</sub>

2d square lattice: Mott insulator with one electron/Cu atom



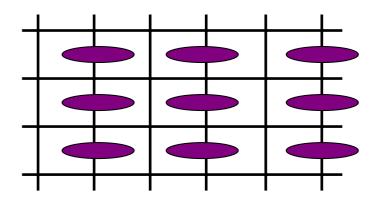

#### Remove electrons: dope in holes

# Doped Mott insulator becomes a high temperature superconductor

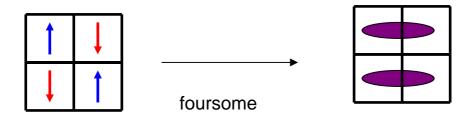


### "Quantum Choreography"



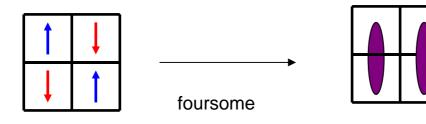

#### Electrons like to dance




"Quantum Docey Doe"

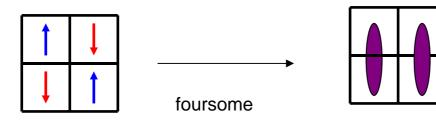
$$= \frac{1}{\sqrt{2}} [|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle]$$

singlet -valence/chemical bond




### Electrons like to "swing"



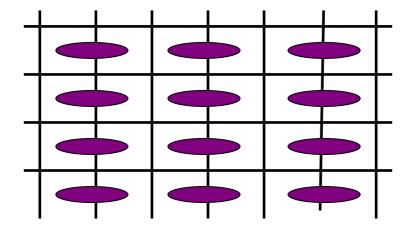

"resonate"

### Electrons like to "swing"



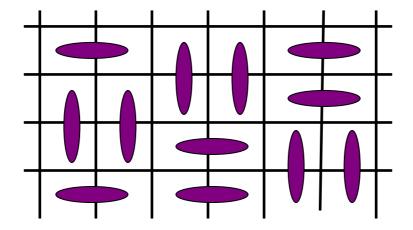
"resonate"

#### Electrons like to "swing"



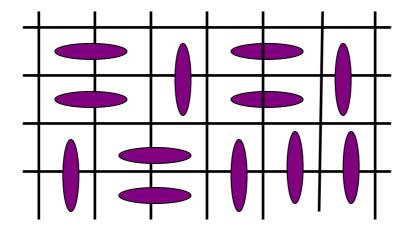

"resonate"

### "Quantum Grand Right and Left"

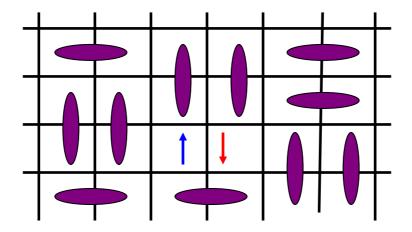

### "Quantum Grand Right and Left"

#### Resonating Valence Bond state (RVB) PW Anderson

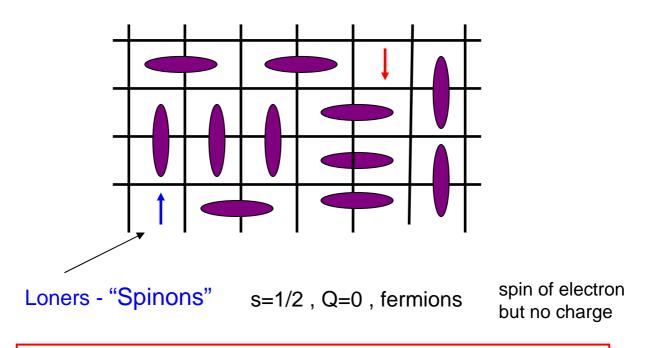



### "Quantum Grand Right and Left"

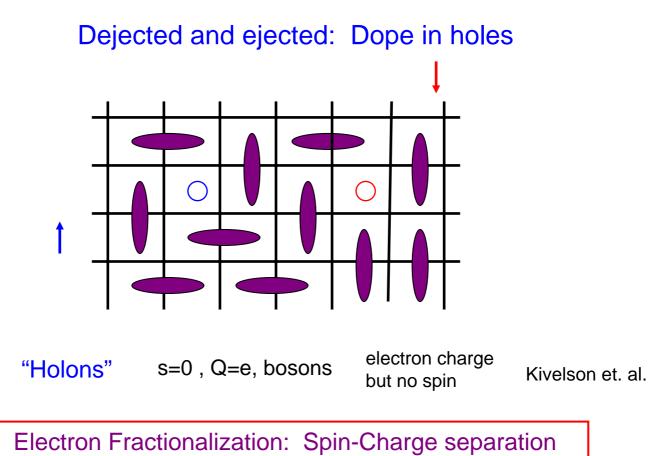
#### Resonating Valence Bond state (RVB) PW Anderson



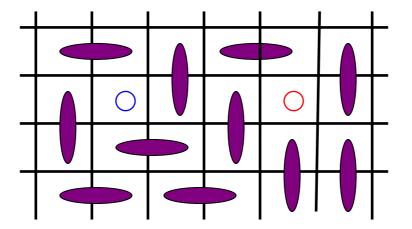

### "Quantum Grand Right and Left"


#### Resonating Valence Bond state (RVB) PW Anderson




### Breakups - break valence bonds




### **Separation**



Electron Fractionalization: Spin-Charge separation



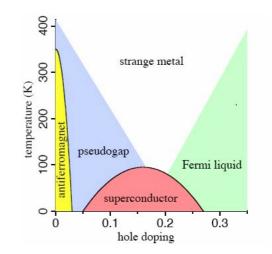
### Condensation of holons - Superconductivity

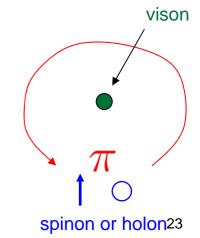


Liberating the electron of its spin/statistics, allows the bosonic charge e to condense

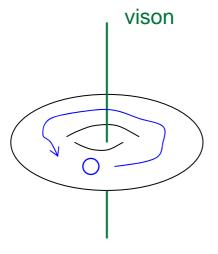
Doping an RVB "spin liquid" - route to high T<sub>c</sub> superconductivity?

#### Doped high Tc Superconductor


- undoped Mott state is a boring AFM, NOT an RVB spin liquid
- AFM destroyed with low doping -"Pseudogap phase"
- Pseudogap an RVB spin liquid?
- How can one tell?


#### **Topological Order**

Simplest RVB spin liquid has "hidden" Z<sub>2</sub> symmetry,

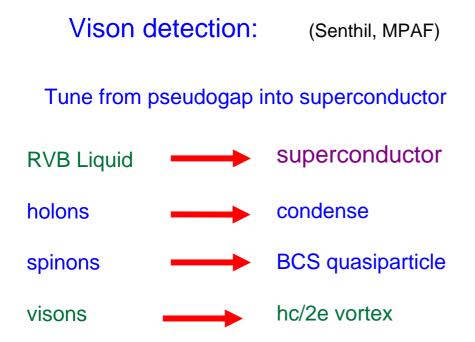

In addition to the spinons and holons which carry a  $Z_2$  "electric charge", there are particles carrying  $Z_2$  "magnetic charge" - "visons"

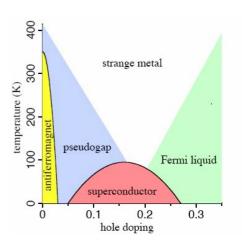
#### $\pi$ phase change upon encircling vison



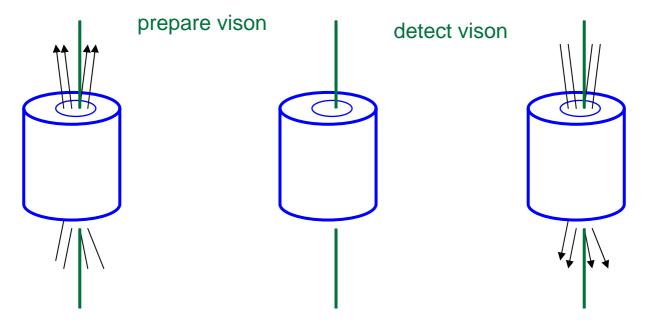


### Topological Order:





Four fold degeneracy on a torus - vison/no vison threading holes of torus

 $\pi$  phase change for holon upon encircling hole


#### Essence of:

- Superconductor Expulsion of Magnetic field
- Z<sub>2</sub> RVB Spin liquid Expulsion of visons ("Z<sub>2</sub> magnetic field") 24





#### Set-up: Superconductor with Hole



cool sc in non-zero B-field, trapping hc/2e flux

heat into pseudogap and turn off B-field

cool back into sc nucleate hc/2e vortex if vison is trapped

#### Vison detection experiment

K. Moler et. al. Nature 414, 887-889 (2001)

Single crystal of very underdoped  $YBa_2Cu_3O_{6.35}$  with  $T_c= 10 \text{ K}$ 

Drill 10 micron diameter hole in 40 x40 (micron)<sup>2</sup> sample

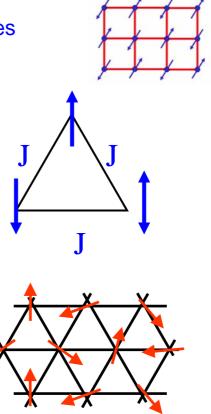
Measure trapped flux with scanning SQUID magnetometer

Cycle T into/out of sc

No trapped flux - ie. vison escaped from hole

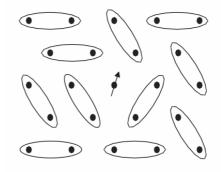
Conclusion: Pseudogap apparently not Z<sub>2</sub> spin liquid

### Avoid symmetry breaking without hole doping?


Mott insulator - symmetry breaking instability - unit cell doubling

eg. AFM order in undoped cuprates

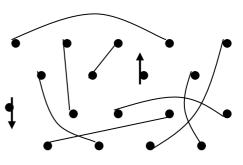
### **Geometrical Frustration**


Triangular plaquette of antiferromagnetically coupled spins cannot all be "satisfied"

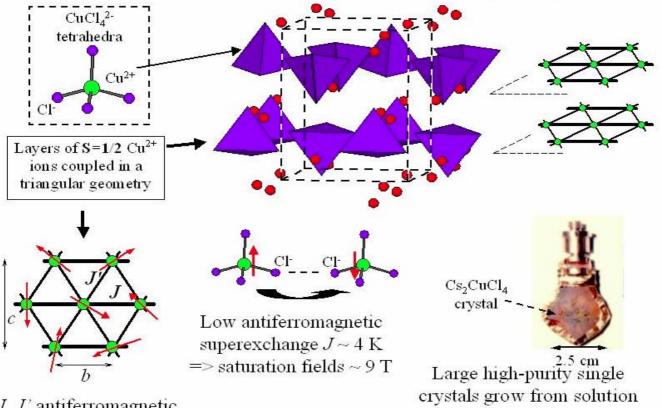
Oftentimes the system can still find a way to order, but not always. Example: Coplaner 3-sublattice arrangement on triangular lattice -



# Spin liquids come in two varieties:


- "Topological Order"
- Gap to all excitations in the bulk
- Ground state degeneracy on a torus
- "Fractionalization" of Quantum numbers
- Decoherence free Quantum computing



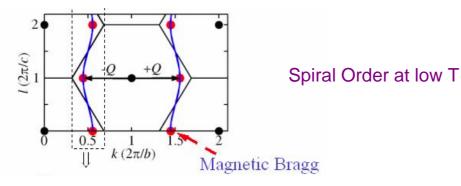

#### **RVB** State

Free "spinon", with s=1/2

- "Algebraic or critical Spin Liquid"
- Gapless Excitations
- "Critical" Power Laws
- No free particle description



Crystal structure and magnetism of Cs,CuCl<sub>4</sub>




J, J' antiferromagnetic



Neutron Scattering from Cs<sub>2</sub>CuCl<sub>4</sub>

• Magnetic Bragg peaks at Q



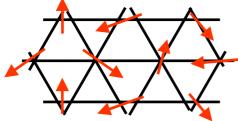
• Continuum Inelastic Scattering near Q

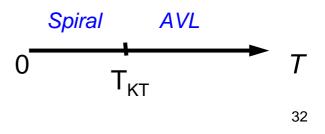
$$\langle S^+(\mathbf{Q},\omega)S^-(-\mathbf{Q},-\omega)\rangle \sim \frac{A}{\omega^{2-\eta}} \quad \eta \approx 0.75$$

Power law scaling: Suggestive of "critical" spin liquid ??

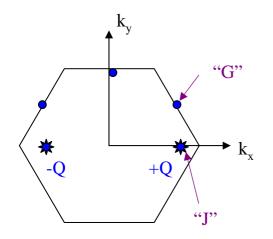
R. Coldea *et al.* PRL **86,** 1335 (2001) Y. Shimizu *et al.* PRL **91**, 107001 (2003)

### Theoretical approach to s=1/2 Triangular AFM


(Alicea, Motrunich, MPAF)


- Duality from spins to "vortices"
- Fermionize vortices via Chern-Simons flux attachment
- Flux smeared mean-field treatment
- Dirac equation with U(1) gauge field and SU(4) flavor symmetry (QED3)

### "Algebraic vortex liquid" (AVL)


- "Critical Phase" with no free particle description
- No broken symmetries rather an emergent global SU(4) symmetry
- Power-law correlations
- Stable gapless spin-liquid (no fine tuning)

# Weak instability to spiral coplaner driven by spin-orbit interactions



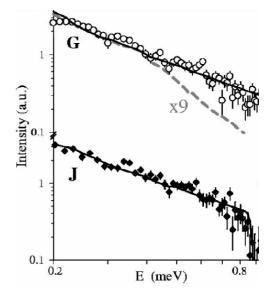


### Comparison with Cs<sub>2</sub>CuCl<sub>4</sub>



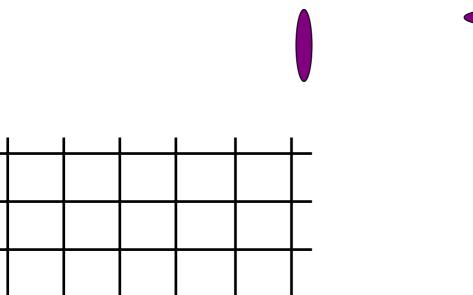
$$\langle S^+(\mathbf{Q}_j,\omega)S^-(-\mathbf{Q}_j,-\omega)\rangle \sim \frac{A_j}{\omega^{2-\eta}}$$

Same  $\eta$  for all  $\mathbf{Q}_i$ ; i = 1, 2, ..., 5


1st B-zone of triangular lattice

#### Inelastic Neutron Scattering

Experiments find same scaling exponent "near" G, J


- but energy scans are NOT at fixed k
- closer look between J and G would be good

R. Coldea, D. A. Tennant, and Z. Tylczynski Phys. Rev. B **68**, 134424 (2003)



### Summary

- Materials with one d or f shell electron per atom are often insulating -Mott insulators - in contrast to band theory predictions.
- If not symmetry broken, the ground state of such a Mott insulator is guaranteed to be an exotic "spin liquid"
- Spin liquids come in two varieties "topological" and "critical"
- Cuprate pseudogap is not the (simplest) Z<sub>2</sub> topologically ordered spin liquid. So what is it??
- Frustrated AFM (eg triangular) show promise for observing "critical" spin liquids
- "Exotic" quantum world awaits discovery and exploration!

