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Discrete Breathers and ILMs

Definition: an “intrinsic localized mode"—or “discrete breather’—
is a highly spatially localized, time-periodic, stable (or at least
very long-lived) excitation in a spatially extended, perfectly
periodic, discrete system.

Bottom Line: The mechanism that permits the existence of
ILMs/DBs has been understood theoretically for more than a
decade, following pioneering works of Sievers, Takeno, Page,
Aubry, MacKay, and others. Only recently have they been
observed in physical systems as distinct as charge-transfer
solids, Josephson junctions, photonic structures, and
micromechanical oscillator arrays.



“In the beginning...” was FPU

Los Alamos, Summers 1953-4 Enrico Fermi, John Pasta, and Stan Ulam
decided to use the world’s then most powerful computer, the

MANIAC-1

(Mathematical Analyzer Numerical Integrator And Computer)

to study the equipartition of energy expected from statistical mechanics in
simplest classical model of a solid: a ID chain of equal mass particles coupled
by nonlinear” springs:

*They knew linear springs could not produce equipartition

Qo @uo@cr v @ .‘
n=0 n=1 n=2 n=N-1 n=N

Fixed @0 = Nonlinear Spring fixed

V(x) = 2 kx? + a/3 x3 + B/4 x4



“In the beginning......"
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ABSTRACT

. A coe-dimensicnal dynamical system of 64 particles with forces be-
Key COnCIUS|On en neighbors cootaining nonlinear terms has been studied on the Los
Alamos computer MANIAC I. The nonlinear terms considered are quedratic,
cuble, and broken linear types. The results are analyzed into Fourier
ml:ﬂ.pluttaﬂ.lil!mmm.
The results show very little, if sny, tendency toward equipartition

of epergy azong the degrees of freedem.

The last few examples were calculated in 1955, After the untimely

death of Professor E. Fermi in Hovesber, 1954, the calculations were
contioued in Los Alameos.
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This report is intended to be the first coe of a series dealing

with the bebavior of certain nonlinear physical systems where the non-

8 introduced as a perturbaticn to a primarily linear problem.

“Experimental
Mathematics”™:\Von
Neumann quote

r of the systems is to be studied for timea which are loog

-

the characteristic periods of the corresponding linear

blems in question do not seem to admit of analytic solutions

or=, and heuristic work wvas performed numerically on a fast

vior of such systems was

ing, experimentally, the rate of approach to the egquipa

amcng the various degrees of freedom of the systenm.

will be considered in order of increasing complefity. This paper is
devoted to the first one only.
: vith the ends kept fixed and

this string. In sddition to the

We imagine a coe-dimensicnal conti

with forces acting oo the elements

usual linear term expressing the dependence of the force on the dis-

placezent of the element, $iis force comtains higher order terms. For

*We tbank Miss Mary/feingou for efficient coding of the problems and
for running the computaticns oo the Los Alamos MANIAC machine.

oo ot v e At least an acknowledgement




What did FPU discover?

1. Only lowest few modes excited.

Note only modes 1-5

Recurrences
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Fig. 1. = The quantity plotted is the energy (kinetic plus potential in eich oi the first five
modes). The units for energy are arbitrary. N =32; @ =1/4; 8/* = 1/8. The initial form
of the string was a single sine wave. The higher modes never exceeded in cnergy 20 of our
units. About 30,000 computation cycles were caleu'ated

T IN THOUSANDS OF CYCLES
Same conditions ad fig, 1 but the quadratic term in the force was stronger. a =1

About 14,000 cycles were computed.



3.

Superrecurrence

FPU
RECURRENCE

ENERGY (arbitrary units)

Now an author!

ENERGY (arbitrary units)

Fig. 10, In the upper part of this figure is seen the standard energy sharing between normal modes for an FPUpgfStem (here N = 16) integrated
through one recurrence, By greatly extending the integration interval as shown in the lower figure, Tuck and Menzel [23] exposed a superperiod of
Tecurrence, Their calculation leaves little doubt regarding almost-periodicity in the FPU motion.
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FPU and Solitons

Since discrete models are harder to treat analytically than continuum
theories, in the late 50s/early60s several groups (Kruskal,... )Jused
multiple scale analysis in formal continuum limit a - 0 to approximate

[you will not get the whole truth here—recall advice of Mark Kac]

y.()— y(x=nat) ~ y(¢=x-vtet)+0(e) ...

a—0 e<<1

0 _
Found that for the consistency had to have %g =U  satisfy KdV egn

u, +uu, +u, =0

Zabusky & Kruskal (1965): “soliton”
Jv

u(x,t)=3vsech’ 7(x —vit)

Amplitude, shape and velocity interdependent: characteristic of
nonlinear wave—solitons retain identities in interactions!
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Initial Position

20 25 30 35 40

Fast and slow solitons interaction for the KdV Equation

10

10

10

20 30 40

Soliton collision: V, = 3,
V=15

Fast and slow solitons interaction for the KdV Equation
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10

Animation of the

interaction between two =ol itons

40
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How do KdV solitons “explain® FPU recurrences?

Initial pulse (typically low mode) I/_\I breaks up into (primarily) a few

solitons. Number and size of solitons depends on initial condition. Recall larger pulses
travel faster for KdV solitons.

» Solitons move with different velocities, so initial pulse spreads to other linear normal modes.

But solitons retain their identities in collisions with each other and reflections off ends of

system. Soliton velocities and length of interval L, determine frequencies o o v/
will be incommensurate in general but can be approximated by rationals ' L

so that initial state will recur with period proportional to lowest common % ;(%)
J

denominator.

» Exactness of recurrence is function of number of soliton modes and accuracy of

rational approximation.
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Integrable vs. Non-Integrable

Equation Solitary Wave

(x-wt)

“S-G” ett _ exx + Sin 9 — O YES 03(5) — 4tan_l e H

“ o4 ¢tt_¢xx_¢+¢320 NO! ¢S(S)=J_rtanh£f 8(17\\/:)}

How do we know integrable from non-integrable?

Historically, combination of “experimental mathematics” (¢*) and known
analytic solutions (S-G), then inverse scattering transform, group
theoretic structure (Kac-Moody Algebras), Painlevé test.

Does any part of hierarchy of solitons in integrable theories

(S-G breather) exist in non-intergrable theories? Recall S-G
breather, stable, (exponentially) Iocallzed periodic solution

g sin t/ V1 +€2)

Op(z,t) = 4tan™"
ol cSsh([e(z — zo)] /\/1+52)
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Quest for a @4 breather

In late 70s-early 80s several groups took up the challenge:
Does the continuum “¢p* “ equation have a breather solution?

Began with small amplitude, multiple scale expansion, which
predicted the existence of a stable, exponentially localized breather

solution
bsap = 1 + (2€/+/3)sechicost- e2sech2+ €2/3sech?¢cos2t+

£3/(6+3)sech3¢cos3t+.......
£ = e2x/(N(1+ €2)) 1= \2t/(N(1+ €2))

Localized and periodic to all orders in €
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Quest for a ®4 breather, cont’'d

« Studied numerically model discretized in space using an
iterative method that converged on solution at fixed spatial
discretization and then studied (linear) stability of solution.

¢, 1 | .
dt? B (ﬂm)g (¢ﬂ+1 T Pp-1 — 2-5,35'”) = c;f'ﬂ + P, = 0.

* Actually had to discretize in time as well to enforce periodic
nature of solution—essentially studied a coupled nonlinear
iterated map.

* Results on next several slides

17



Site-centered localized “breather”
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Note values of parameters and apparent localization
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SC, nonlocalized breather—"nanopteron”
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“Wings” reflect coupling to small (linear) oscillations—solution is not localized



Behavioras A x=>0

5 {s} o = COO8 Ax = 08080

Solution delocalizes
asAx=>0
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Hints of a discrete ®* breather

* Numerics could not resolve Ax => 0 behavior, but
suggested that for any given g, at finite Ax > Ax,, there existed
stable, localized “discrete” ¢p* breathers. For Ax < Ax,, the
breathers had extended oscillatory tails, became “nanopterons”.

« Numerical studies of stability of the discrete breathers as
functions of A x and € showed a complex pattern of stable and
unstable regions. Detailed results are shown on next
slide for particular region of parameter space.

* A theoretical analysis based on a resonance between the second
harmonic of the breather frequency, 2 B, and the linear phonon of

the same frequency predicts the stability regions shown in the
second slide. The results are in close agreement.

21



Discrete ¢* Breather stability region: numerics

N e e e i e el
¢* Numerical stability analysis

.55

1 I_ i — I 1 I I 1 1 1

Black=unstable, “white”=stable, where points indicate discrete grid of calculation
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Discrete ¢* Breather stability region: theory
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Fate of the continuum ¢* breather

Segur and Kruskal showed that the small amplitude expansion is
only asymptotic and terms “beyond all orders” (i.e., of the form
exp(-1/¢)) render the putative ¢* breather unstable to “decay” into
spatially extended linear excitations (phonons), leading to a
“nanopteron”. Leading term is coupling to second harmonic of

breather, consistent with numerics.
Orrye =Psag + C1 EXP%/E) [COS (Ko X) - g )] + ...

“beyond all orders”

Stability of SG breather is now rigorously known to be result of
the “complete integrability” of the SG equation (“true” soliton
equation) and it is uniqgue among continuum theories—all other
putative breathers do decay by emitting phonons with frequencies

that are harmonics of the breather frequency.
24



ILMs: Intuition and Theory

Consider diatomic molecule modeled as two coupled
anharmonic oscillators:

— anharmonic = nonlinear => frequency depends on amplitude
of motion, o(A): familiar from plane pendulum, where
frequency decreases with amplitude

Consider “anti-continuum” limit of no coupling:

— Trivial to “localize” excitation on one of oscillators only;
frequency of oscillation depends on amplitude ~ energy

Consider weak coupling:

— Imagine one oscillator highly excited, other weakly excited.
Frequencies are very different. Suppose

o (A))/ ® (A,) # p/g—i.e., frequencies are incommensurate.
Then there are no possible resonances between oscillators,
and energy transfer must be very difficult, if even possible.

Can formalize heuristic argument via KAM Theorem

25



ILMs: Intuition and Theory

Choose our favorite discrete ¢* model as example.

¢, 1 .
dt? B (ﬂ:ﬂ)z (¢n+1 =+ ¢'n.—1 == 2(;5”) — ¢'n -+ Qf'ﬂ = (.

+ “Quartic” double-well oscillator ¢(t) at each site (n) of
infinite “lattice”: minimum of potential at ¢, =1

* Coupling ~ 1/(Ax)? Key point

« Spectrum of linear oscillations’about minimum ¢, =1 is
w2 =2+ (2/Az)?sin’*(¢/2), & band, bounded from above
and below—upper cut-off from discreteness.

26



ILMs: Intuition and Theory

For nonlinear oscillations about minimum in quartic
oscillator, frequencies decrease with amplitude, so one
can create a nonlinear localized mode with frequency )y,

below the linear spectrum.

If Az s large enough, so coupling ~1/(Az)? is

small, the band of excitations w? = 2 + (2/Ax)? sin %(q/2)
IS very narrow, so that the second harmonic of Wy

can lie above top of band. Thus there can be no (linear)
coupling of local mode to extended states and it is

(linearly) stable.

27



ILMs: Intuition and Theory

Figure shows linear band (yellow)
with energy-momentum dispersion
relation (green curve)

w? = 2 + (2/Az)?sin’*(g/2)

for Az =10. The isolated localized
mode frequencies, Wy , are
shown for the types of I[LMs shown
in the top and bottom panels. Note
that ILMs can occur both above
and below the linear band—those
above have an optical character
(adjacent particles out of phase) ,
whereas those below have an
acoustic character (adjacent
particles in phase). There are many S
ILMs—only four are shown here. |
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ILMs: Intuition and Theory

* Rigorous results based on “anti-continuum” limit
establish existence of, and can be used to construct,
ILMs/DBs in wide variety of lattice systems in any
spatial dimension.

* |LMs can propagate along lattices, can be generated
by thermal fluctuations, and can be quantized.

* ILMs act as strong, frequency dependent scatterers
of linear modes.

29



Historical Precursors

* Continuum breathers in non-integrable theories: “been
there, done that”

« Defect vs. Self-Trapped Modes—Bloch’s theorem implying only
extended (“band”) states in perfect solids is avoided if the lattice is
deformable—Landau (1933) first recognized possible existence of a
self-trapped “polaron” excitation. Modeled by “Discrete Nonlinear
Schrodinger Equation”

di,
dt

NB: 1) Think of |\V|2 as a strongly localized potential—relation to defect
states and Anderson localization.

2) Form of nonlinearity implies trivial example of ILM/DB—amplitude-
independent frequency solutions exist.

7 + J(’-‘,f)n+1 = 2'¢’n =+ Tll&n—l) o+ ﬁ|wn|2uf’n — U:
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Historical Precursors

* Quantum ILMs in Small Molecules —already in 1920s
chemists realized that anharmonicity in vibrational potential in
molecules could lead to the localization of highly excited (i.e.,
many-quanta) vibrational modes. Frequencies of these
localized modes are “red-shifted” from expected values based
on simple multiples of fundamental phonon frequency. These
“‘quantum ILMs” are predicted (and observed) in benzene and
are long-lived (but not infinitely stable).

31



Current Experiments: Solids

Natural lattice structure of
solids suggests ILMs
should be found here,
likely in quantum version.
Observed redshift of
Raman modes in charge
transfer solid PtCl can be
explained by assuming
ILM formed as shown in

Figure (from Kladko et al.).
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Current Experiments: Josephson Junctions

In an annular Josephson
Junction ladder driven by
a DC current, ILMs appear
as localized normal
junctions in the otherwise
superconducting annular
ladder. The red and yellow
Images in the experiment
(sketched below for clarity)
correspond to different
values of the voltage drop
across the resistive states.
(From A. Ustinov et al)

H
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Current Experiments: Optical Waveguides

Schematic view of an optical
waveguide array created by
patterning a layered
semiconductor, showing the
rough dimensions of the system.
Note that the input laser beam
can be focused on a single
element of the array, creating an
initially spatially localized
excitation, which then propagates
toward the output facet at the
back of the array. (From
Eisenberg et al).

\
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Current Experiments: Optical Waveguides

Edge-on view of the output facet of
the coupled optical waveguide array
shown on previous slide. The input
pulse is localized at the center of
the array. At low power, pulses
propagate linearly and “diffract”
across entire array. At intermediate
power, nonlinear effects induce
some localization. At high power,
the pulse remains truly localized
and is an example of an ILM in
these systems. (From Eisenberg et
al).

100 mW
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Current Experiments: Photonic Lattices
I
(b) (¢ (d)

36

A two-dimensional ILM forming in a
photonic lattice created by optical
induction in a crystal with
photorefractive properties. A second
laser beam provides the input
(shown in (a), which is centered on
a single “site” in the photonic lattice.
Panel (b) shows the linear
“diffraction” output that occurs in the
absence of the photonic lattice;
panel (c) shows the behavior at )
weak nonlinearity; panel (d) shows

an ILM at strong nonlinearity. (From

H. Martin et al)




Toward the Future

Theoretical prediction of ILMs in a regular 2D lattice of
rods of two different types of semiconductors. One type of
rod has very weak nonlinear optical properties, whereas
the other is strongly nonlinear. (From Mingaleev et al)

m ml . . -
lop view 3D view
o000 O00000
-----------
C0OO0CO0CO0O0CO0O0O0CO0 OO0
ooooooooooo
oo o N v ) 0 0000
'oﬂ‘ » L] L 3 GD.O'OQO
2-0' & .D.O.OQO
0’0’ *#a’c’o
L ] o » - L ]
Onoo a B‘c-o-o
O o0 O 0
----- -] -] [ ] o
ogo. -OGO .o.o’o'o
Q Q 0 Q Q0 Q Q00
-----------
o000 O0O0000O0
ooooooooooo
00000000000

37



Towards the Future

Theoretical prediction of
biopolymer folding nucleated by
ILM. ILMs have been suggested
as the mechanisms for the
“unzipping” of DNA, as well as for
the transport and storage of
energy in biopolymers.
Theoretical results suggest that
ILMs in these systems can arise
both from thermal fluctuations and
from local excitation, such as by
an STM tip. (From Mingaleev et
al).
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Towards the Future

« |LMs are more ubiquitous and robust cousins of
solitons and thus will appear in still wider range of
physical systems.

* ILMS may play important roles in advanced
photonic switching devices, in energy transport
and storage processes In blopolymers In
“‘unzipping” of DNA and in folding of proteins.

*The future is now! Recent predictions and
observations of individual ILMs being created and
destroyed in 1D AFM and in ultra-cold atoms, as
well as proof of “g-breathers” in FPU itself and a
proposal to observe ILMs in macromolecules with
STM highlight the interest in the topic.
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Summary and Conclusions

* Odyssey from FPU to ILMs followed a remarkable course
* FPU recurrences to KdV solitons
« Sine-Gordon vs. ¢*—continuum breathers?
« Numerics of (widely) extended discrete breathers in ¢*
* Anti-continuum limit and highly localized ILMs/DBs

[LMs are ubiquitous in nonlinear discrete systems, independent of
spatial dimension

* Experimental Observations of ILMs

40



Epilogue on FPU

FPU was a watershed problem: it led to solitons and ILMs, but also to
chaos, and deep insights into the fundamentals of statistical mechanics,
anomalous transport, and energy localization. It was, as Fermi once

remarked, quite a “little discovery.”

41
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Intersite-centered localized “breather”
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Intersite-centered non-localized breather
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For this smaller value of Ax, “breather” acquires oscillating tail



Things to Change for Houston/Ariz

Have cut two Peyrard figures—show only 1 localized, 1
nanopteron, and the delta x => 0 results, plus the coupling
to two phonons and stability regions—done 8/15/05

Move ILM definition and bottom line to start—then go
back to FPU— done 8/15/05

Try to add some of the simulations of sine-Gordon, or
something dynamical—either old movies or new stuff
from Mathematica—done 10/18/05

Fix animation on several of the slides!!
Update latest stuff on ILMs—include new experiments
Include q breathers as “final solution” to FPU results

46



From FPU to Intrinsic Localized Modes:
An Odyssey in Nonlinear Science

David K. Campbell
Boston University

Department of Physics
University of Houston
October 25, 2005

BUENgineering



Note the Error Here

the purposes of numericsl work this c

number of points (st meet 64 in Air Aetusl computation) so that the par-

tial differential eguatiocn dpfin the potion of this string is replaced
by 8 finite nuaber of totgl differentisl equations. We have, therefore,

& dynamical system of oayticles with forces acting between neighbors

with fixed end po xy dencfes the displacement of the i-th
point from its position, apd O denctes the coefficient of the
quadratic in t)fe force between the neighboring mass points end B

that of tée cubly ters, the equations were either

X _ 27 = G oy - 2 v fixgyy - - Gy %07 )

=1, 2, ... 6b,

X _ % = gy + % - 2xp) + F[“iu - %)% - (xy - ‘“1-1}3] )

i=1, 2, ... B4.
& and B were chosen so that st the mexizum displescesent the monlinear
term vas smell, e. g., of the order of cne-temth of the linear term. The
corresponding partisl differential equation obtained by letting the
number of particles become infinite is the usual weve equaticn plus non-
linear terms of & complicated nature.
Another case studied recently was

s

% o= b (x,

- %) - 8alxy =% ,) ve (3)
wvhere the parameters 51, & 51 € were pot constant but asacmed differ-
ent values depending on whether or not tbe quantities in parentheses

-l
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