Global Change in Water Availability

How are river discharge and soil moisture going to change as global warming proceeds?

Radiation Budget of a Planet

Greenhouse Effect of the Atmosphere

Water Vapor Feedback

CO₂-Induced Change in Effective Emission Source

Change in Surface Heat Budget → Change in Evaporation Rate

Surface Heat Balance: NDSX = (ULX – DLX) + SH + LH

CO₂-Induced Heat Gain: $\Delta_{cO2}Q = \partial(ULX - DLX)/\partial Ts + \partial(SH)/\partial Ts + \partial(LH)/\partial Ts,$ $\partial(UX - DX)/\partial Ts;$ Small $\Delta_{cO2}Q \sim \partial(SH)/\partial Ts + \partial(LH)/\partial Ts$ $\sim \partial(LH)/\partial Ts$ = L• $\partial(E)/\partial Ts$] → Intensification of hydrologic cycle

Coupled Ocean-Atmosphere-Land Model

Global Grid System

Physical Processes in a Model

Annual Mean Precipitation, cm/day

Numerical Experiments

Eight Global Warming Experiments

"IS92a Scenario" with sulfate $[CO_2 \text{ doubles } \sim 2050]$

CO₂-Quadruppling Experiment

Extension of IS92a Senario without sulfate [CO₂ quadruples ~2120, and remains unchanged thereafter]

Time Series from Global Warming Expts

Global Mean Changes

	ΔT_s^G	∆Precip.	∆Runoff
		= ∆Evap.	
2050	+2.3°C	+5.3%	+7.3%
4xC	+5.5°C	+12.7%	+14.8%

Changes in the rates of Precip. & Evap. (by 2050)

River Discharge (10³m³s⁻¹) High Latitudes, Europe & NW-region of N. America

	Rate	Change	Change
Name	S. (Obs.)	2050	4xC
Yukon	10 (7)	+21%	+ 47%
Mackenzie	9 (9)	+21%	+40%
Yenisei	13(18)	+13%	+24%
Lena	15(17)	+12%	+26%
Ob'	6(13)	+21%	+42%
Subtotal	53(63)	+16%	+34%
Rhein/Elbe/-	3(4)	+25%	+20%
Volga	5(8)	+25%	+59%
Danube/-	7(9)	+21%	+9%
Columbia	6(5)	+21%	+47%
Subtotal	21(26)	+23%	+34%

River Discharge (10³m³s⁻¹) (Middle Latitudes)

	Rate	Change	Change
Name/River	S.(Obs.)	2050	4xC
S.Lawrence/Ottawa/-	12(12)	+6%	+12%
Mississippi/Red	10(18)	+0%	-7%
Amur	9	-1%	+3%
Zambezi	31	-1%	+2%
Huang He	17	+0%	+18%
ChangJiang	54(29)	+4%	+28%
Paraná/Urguay	24	+24%	+54%

River Discharge (10³m³s⁻¹) (Low Latitudes)

	Rate	Change	Change
Name/River	S.(Obs.)	2050	4xC
Amazonas/Jari/ Maicuru/	234(194)	+11%	+23%
Ganga/ Bramaputra	49(33)	+18%	+49%
Congo	122(40)	+2%	-1%
Niger	58	+5%	+6%
Nile	50(3)	-3%	-18%
Orinoco	28(33)	+8%	+1%
Mekong	29(9)	-6%	-6%
Subtotal	512(313)	+7%	+13%

Change (%) in River Discharge)

- High Lat.; Marked increase in Arctic rivers
- Middle-High Lat.; Marked Increase in Europe, &
 - northwest coast of North America
- Middle-Low Lat.; Relatively small change
- Tropics; Large increase at Ganga/Brahmaputra Moderate Increase at Amazonas
 Changes of both signs in other rivers

Annual Mean Soil Moisture, Simulated

Reduction of Soil Moisture in Semi-Arid Regions

Surface Water Balance:

 $P \sim E$, (r_f; Relatively small) $\Delta P \sim \Delta E$ $\sim \Delta [E_{P} \cdot w/w_{FC}]$ Little change in Precipitation (P) Increase in Potential Evaporation (E_{P}) \rightarrow Reduction in Soil Moisture (**w**)

Soil Moisture Change (%) by 2050

Soil Moisture Change (%), 4xC

Summary (Soil Moisture)

Semi-Arid Regions:

Reduction during much of a year particularly during dry season
Gradual expansion of deserts
From Middle to High Latitudes:
Reduction in summer
Increase in winter

Time series of annual mean soil moisture in southwestern region of North America

Δ (Vertical p-velocity), 4xC – 1xC

Change in Annual Precipitation Rate mm/day

% Change in Annual Precipitation

Global Mean Changes

LeTreut and McAvaney, 2000

Numerical Experiments

Control Experiment Integrated over 1,000 years **Eight Global Warming Experiments** Integrated over 1865-2090 AD "IS92a Scenario" with sulfate CO₂-Quadruppling Experiment **Integrated over 300 years** Increase at 1% / yr. \rightarrow Quadruples at 140th yr.

Analysis Period

Eight Global Warming Experiments Analysis Period: 2035-2065AD 30yrs x 8 = 240yrs **CO₂-Quadruppling Experiments** Analysis Period: 200th – 300th ~ 100yrs

Coupled Ocean-Atmosphere-Land Model with Simple Parameterization **Atmospheric Component** R30 Spectral GCM (2º Lat. X 4º Long.) **Saturated Convective Adjustment** Oceanic Component Finite Difference (2° Lat. X 2° Long.) **Simple Sea Ice Model** Land Component **Bucket Model**