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What is a superfluid weak link?
Josephson Equations

Generic technigue for observing the physics

SHe
Josephson oscillations (the quantum whistle)
The current-phase relation
The 3He superfluid gyroscope

“He

Quantized phase slips

Search for phase slip sound
Josephson oscillations again!

The current phase relation

The coherence question

Prospects for a practical gyroscope



A superfluid weak link:
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Criterion for weak link barrier dimensions

Josephson Junction:

Superconducting weak link:

E,L gzjw

f.= ZETV = 483THz /Volt

J

Superfluid weak link:

f - 2m, (Apdcjor m, (APdC —SATJ
h o, h\ p

f,; =183Hz/mPa or f,, =68.7Hz/mPa

Size of barrier must be on the order of or less than
the coherence length &

For superfluid *He, §(T=0) ~ 70nm
For superfluid *He, §(T=0) ~ 0.1nm



60nm

53 — For 3He cool to below 1mK

(1-T/T )"

54 — ( 0.3nm For 4He cool to below 2K

1-T/T,)™

Use 3He to exploit longer healing length



| Experimental Cell Design |

Weak Link

Eugyell

I
Stiff x Feedback

Diaphragm Electrodes

NMR Thermometer
Heat Exchanger

4225 holes in a 50 nm
thick silicon nitride
membrane

Able to detect ~ 101°m
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Determination of the current-phase relation

dp _ 2ms AP(t t
dt Ol ¢(t)=¢(0)—(— 2m3ﬂ]IX(T)df & l(t)=Ap%
AP = x(t) L

Eliminate common variable time and plot ...
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Two Distinct Current-Phase Relations.

Experimental Data.
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‘Superfluid dc-SQUID: a gyroscope‘

—> | o [ 1=1sin(g)

The critical current is
modulated by the rotation flux




Displacement sensor

pickup coil Electrode

Diaphragm

T+AT, P+AP

Sensing Loop




Superfluid 3He gyroscope

Whistle amplitude vs. reorientation wrt
the Earth’s axis
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Superfluid *He
Weak Link
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What about 4He?

Variation of coupling strength
via the healing length, £AT)

£ = O.3(1—T/T7L)_0'67

=
=
' wp
T 1(Ag) £ 100
£ = 0.3nm g 50
- (<)
Ty 2| TV
Strong coupling: &, < d O 71 5 3 2

Weak coupling: &, > d



A superfluid “strong link”

aperture

1. Ap drives superfluid “He through an aperture

2. V. increases till it reaches V,
3. AtV, avortex is nucleated and the flow velocity drops by a fixed amount Vsiip

Y x _h/m,

21 phase slip

slip — |

eff I eff




21 Phase Slip

aperture

A

1. A drives superfluid “He through an aperture

2. V. increases till it reaches V,

3. AtV avortex is nucleated and the flow velocity drops |
; Kk h/m eff
by a fixed amount Vsiip V / 4




Phase Slip Oscillations

aperture What happens if we keep applying Au?

1. V increases till it reaches V

2. Phase slip event takes place and
V drops by Viiip
3. V increases again due to Ap
to repeat the same process

}

- Phase slips occur at Josephson Frequency

fj:A_ﬂ
h




Generic apparatus

Displacement sensor
pickup coil Electrode

Diaphragm

42_25 holes in a 50 nm thick
silicon nitride membrane

T+AT, P+AP
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T,P Aperture Array




Demonstration of Josephson frequency
relation when Ap = m,AP/p

Chemical potential difference
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Thermally driven quantum oscillations
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How do you get from a sawtooth to a
sinusoid?
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Determining the current-phase relation
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Displacement sensor
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Are the phase slip oscillations synchronicity
or quantum phase rigidity?

* A Fourier transform of the quantum whistle shows
very narrow spectral width.

* Does the periodicity evolve over time or is it present
from the first instant?

The end of an impulse transient
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Displacement sensor
pickup coil

Diaphragm
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Electrode
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T, P Aperture Array

The slip removes all of the energy
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2V, >V

slip > Vc Vc Vsip
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Slips remove some but not all of the energy
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e Slip size is the same for the 15t slip and
the Nth. Maybe synchronization plays
no role.

e Synchronization cannot be ruled if the
Interactions are strong.



More Questions

 |s phase slippage a global process
wherein a single vortex fillament passes
over the complete array?

 |s phase slippage a cooperative process
wherein each aperture slips but they all
are locked together? N vortex events

* Does phase slippage in one aperture
trigger an “avalanche” slip in all N?
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One more mystery

 Why does the slip size decrease as T Is
lowered?



Next step Is to build a superfluid
“He dc squid gyroscope

Future possibilities:

A superfluid gyroscope operating near 2K
cooled by a mechanical cryocooler

Useful for geodesy, seismology and
navigation



Summary

SHe: Arrays of nanometer size apertures behave as ideal Josephson weak
links. Quantum coherent dynamics

Josephson oscillations, Shapiro steps, plasma mode.
Discovery of novel dissipation, novel I(¢) relation
Proof-of-principle of superfluid dc-SQUID gyroscope

He: Aperture arrays behave quantum coherently near T,

The current-phase relation has been mapped from the “strongly

coupled” linear regime to the “weakly coupled” Josephson I(¢)
regime.

Near T, all apertures phase slip coherently. Dynamics
unknown.

At lower temperatures the phase slip sound amplitude
decreases but the quantum whistle remains well defined. Why??
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