Molecular Mechanism of Proton Transport in Membrane Proteins

Régis Pomès

Structural Biology & Biochemistry, Hospital for Sick Children Department of Biochemistry, University of Toronto pomes@sickkids.ca

Why study mechanisms of ion transport?

Biological importance

- − Ionic gradients are essential to proper biological function
 → nervous system, metabolism, ATP synthesis...
- Membranes block ion flow
- Specific transport is mediated by membrane proteins
 = channels, transporters, pumps

→ ion permeation (potassium, chloride, sodium...)
→ ion exclusion (aquaporins = water specific)

 \rightarrow ion pumps

Medical relevance

Malfunction of channels is linked to disease:
− Cystic fibrosis ← Chloride channel

- Aquaporins \rightarrow cataract, diabetes, ...

- But there's no life without proton pumping!

H⁺ transport across biomembranes

Chemiosmotic coupling

H⁺ pumping is required for ATP synthesis

H⁺ transport across biomembranes

Passive H⁺ transport destroys proton-motive force

Physical basis of permeation

Channels = narrow, water-filled pores

Selective to the passage of certain ions and/or small molecules

Allow ions to cross the dielectric barrier of the membrane

Proton transport and blockage

1. Relay of H⁺ translocation in gramicidin

2. Exclusion of protons from aquaporins

3. Uptake of protons in cytohrome c oxidase

Biological Proton Translocation

Opposed by the dielectric barrier

H⁺ reactivity \rightarrow special transport properties

Annales de Chimie <u>58</u> :	54 - 74 (1806)
54 ANNA ^A LE'S MÉMOIRE	DE CHINIE. 55 et satisfaisante. J'ai été conduit à cette théorie par les observations suivantes.
Sur la décomposition de l'eau et des corps qu'elle tient en dissolution à l'aide de l'électricité galvanique, PAR C. J. T. DE GROTTHUSS (1). CHAPITRE PREMIER. Action de l'électricité galvanique sur cor- tains corps dissous dans l'eau. S. FREMIER.	Lorsqu'on fait passer à travers une dis- solution métallique saturée, un courait d'é- lectricité galvanique, dont l'intensité se trouve proportionnée à l'intervalle occupé par le liquide, et compris rotre les extrémités des deux fils conducteurs, on observe des phé- nomènes intéressans, même pour celui qui ne se mêle pas d'en approlondir, la caose. A l'extrémité du fil en contact avec le disqué de zine, l'oxigène se dégage, pendant qu'à l'extrémité du fil en contact avec le disqué de cuivre, les molécules du métal en dis-
d'hypothèses imaginées pour expliquer la décomposition de l'eau par l'appareil élec-	un arrangement symmétrique qui s'étend dans la direction du leourant galvanique.
tromoteur, j'exposerai une théorie générale de la décomposition des liquides par d'élec-s tricité galvanique, qui me paroit réduire les éffets de celle-ci à une explication simplés	S. III. Cet arrangement n'est qu'une cristallisa- tion imparfaite des molécules métalliques parfaitement semblable à celle qu'on ton noit, solis le nom d'arlorisation, et qui t
Note avons pensé qu'on le trouveroit ji ci avon plusir a suit de la cimprime a desiré qu'on le reimprime.	lieu en précipitant les métaux en dissolu- tion par d'autres métaux. Les abciens ajou D 4

Theodor Grotthuss (1785-1822)

The Grotthuss mechanism owes its name to a paper published in 1806

1. Proton relay in the gramicidin channel

Pomès & Roux, *Biophys. J.* 1996, 2002

Proton solvation and hydrogen bonds

- H⁺ is very **reactive** → it doesn't exist by itself in biological systems
- The hydrated proton exists primarily in two forms:

• These two species differ in the length of the hydrogen bonds

The Grotthuss mechanism: proton exchange

• The exchange between the two forms of hydrated H⁺ drives transport:

- This relay process hinges on fluctuations of small amplitude (~1 Angstrom)
 on ps timescale
 - → translocation of H⁺ across large distances (10's of Angstroms)
 in 10⁻⁹ second or even faster.

The exchange between OH_3^+ and $O_2H_5^+$ is the elementary step of proton relay

What is the role of the channel in the mechanism? Proton solvation and hydrogen-bonded networks

 Both forms of the hydrated proton are stabilised by hydrogenbonding donation to 3 neighbors

- In water, hydrogen bonds are constantly formed and broken
- In gramicidin, the channel backbone provides ideal coordination

Mechanism of proton transport in water

RLS for H+ transport in water =

Gramicidin offers a local environment well suited to rapid proton transport (solvation and mobility)

Role of membrane channels in ionic solvation and mobility

Origin of the attenuation of H⁺ conductance by methanol?

Diffusion of methanol in gramicidin

Attenuation of proton permeation by methanol

- Methanol fits in the pore of gramicidin
- It blocks proton relay because it never forms a continuous chain

MeOH₂⁺ does NOT form a continuous chain + does NOT tumble when inside the channel

Conclusion: blockage of H⁺ relay when MeOH is in

Pomès & Yu, Front. Biosc. 2003

2. Proton exclusion from aquaporins

Water-selective channels

10⁹ H₂O s⁻¹

Water diffusion is coupled to their reorientation

(DeGroot & Grubmuller, *Science* 2001) (Tajkhorshid et al., *Science* 2002)

Exclude ions

Hydrogen-bonded water chain

Physical basis of proton blockage?

Proton exclusion from water channels

Some observations:

Arg206 could prevent approach of + ← charge-charge repulsion

Adverse polarisation of water molecules incompatible with intrusion of proton

Local interactions with N68, N203 incompatible with solvation of hydrated proton

Free energy profile for water reorientation

Strong preference for bipolar organization opposes the turn step of structural diffusion

Free energy profile for H⁺ transfer

Ionic solvation: charge-dipole interactions

• O is electronegative, H is electropositive.

• The dipole moment of water molecules (charge separation) stabilises ions:

- Peptide bonds also have a dipole
- The dipole moment of peptide bonds and α helices stabilises ions

Adverse charge-dipole interactions give rise to proton exclusion

Continuum electrostatic calculations

Total electrostatic energy =

reaction field ← dielectric boundaries

+

static field ← charge distribution

Electrostatic origin of the free energy barrier opposing proton translocation

Hop PMF Full ESP = charge + dielectric No membrane dielectric

Size selectivity at R206

Static field = effect of charge distribution of the channel

Chakrabarti et al., Structure 2004

PMF vs PB in aquaporin channel variants

H⁺ PMF is essentially determined by the distribution of charged and polar groups

Structural determinants of H⁺ blockage: charge-dipole interactions

Mechanism of proton exclusion in aquaporins

Favored

Forbidden

??

Compromising proton impermeability of aquaporins?

Single point mutation introducing a negative charge at the NPA motif: Asn68 → Asp

Predicted to leak protons...

Doesn't express!

Chakrabarti et al. J Mol Biol 2004

3. Proton pumping by cytochrome c oxidase

A proton wire in the D channel

Water-mediated proton uptake

Kinetics of proton uptake in oxidase

The D channel is a proton sink: strongly non-equilibrium

The kinetics of proton uptake is modulated by dynamic fluctuations of the water chain

The RLS corresponds to a bottleneck at residue 139

What is the origin of decoupling in N139D and N207D mutants?

Conclusions

Detailed balance of microscopic forces
→ physical basis of proton transport and blockage in membrane proteins

Atomistic simulations

- \rightarrow events hard to observe experimentally
- → generate/refine testable mechanistic hypotheses

<u>Next</u>: mechanism of redox-coupled H⁺ pumping in cytochrome *c* oxidase

Acknowledgments

<u>Toronto</u>

Dr. Stéphanie Baud Dr. Nilu Chakrabarti Dr. Elisa Fadda Martin Kurylowicz Chris Madill Sarah Mansour Tom Rodinger Dr. Tony Mittermaier Dr. Ching-Hsing Yu CISS-3 Paul Lu Martin Karplus

Collaborators

Benoît Roux Mark Schumaker Emad Tajkhorshid

Funding HSC, NIH, CIHR, CRC/CFI