
Scientific measurements are never 
perfect, but different teams studying the 
same phenomena can often produce 
widely different results. These “outlier” 
values are the cause of much 
consternation – but they may also be a 
sign of healthy scientific progress, says 
David Bailey

Why

OUTLIERS
are good for science

David Bailey is a professor in the 
Department of Physics, University of 
Toronto. He worked for many years 
in experimental high-energy physics, 
usually looking for things that were not 
found, so it was a pleasant change to 
have been one of the many thousands 
of co-discoverers of the Higgs boson. His 
current research and teaching focuses 
on experimental uncertainty and why 
measurements are sometimes wrong.
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Children are often taught in school that measurement 
is a straightforward process with little room for error. 
Hold a ruler up to an object, or place some quantity 
on a scale, and read off the value. The pencil is 12 cm 

long; the blocks weigh 1.4 kg. Repeat the measurement and 
the answer will be the same.

In science, measurement is anything but certain. The tools 
are more complex than a ruler or scale. The objects of study 
may be less tangible and more ephemeral than pencils and 
building blocks, and they range in size from the smallest 
particles of matter to the largest structures in the known 
universe. All this complexity means that no measurement is 
perfect. There is always some error. 

Scientists treat this error as uncertainty, reporting both the 
measured value and a range within which any error would be 
expected to fall. Yet scientific measurements often disagree 
by far more than their reported uncertainties. Such differences 
raise questions about how uncertainties are evaluated and 
interpreted, whether some outliers are an unavoidable 
consequence of good science at work, and what are realistic 
expectations for scientific reproducibility. 

Big G
Most recent concern about irreproducible research has 
focused on life and social sciences, but the scientific quantity 
with the longest history of inconsistent measurements may be 
Newton’s constant, GN. “Big G”, as it is often called, determines 
the strength of gravity and is important from the tiniest to the 
largest scales in physics – from setting the size of superstrings 
to determining the motions of planets, stars and galaxies. It 
has been carefully measured by excellent scientists for over 
two hundred years.

These scientists worried about and investigated every 
possible source of error they could think of, but how well did 
they estimate the uncertainties in their results? Since the true 
value of G

N is unknown (which is why we must measure it), 
the only way to judge the accuracy of reported uncertainties 
is to check if the differences between measured values are 
consistent with their uncertainties. These differences are 
shown in Figure 1.

One might hope that the reported uncertainties, σ (“sigma”), 
would be associated with familiar “bell curve” Gaussian 
probabilities, in which case we would expect only 5% of 
the differences to be more than 2σ, and less than one in a 
million to be more than 5σ. The data are not even close, with 
35% of the differences more than 2σ, 17% greater than 5σ, 
and one measurement disagreeing by 65σ! Instead of being 
Gaussian, the differences are consistent with the Cauchy 
distribution, infamously so broad that its average value does 
not even exist, and some statisticians have had difficulty 
believing that it could be associated with the uncertainty of any 
sensible measurement.

Scientific accuracy
The problem is not only with Big G. Although Newton’s constant 
is an extreme example, non-Gaussian outliers are common for 
scientific measurements. This is illustrated in Figure 2, based 
on a study of 40 526 measurements of 3228 quantities in 
fields from medicine to particle physics.1 The distributions of 
differences between measurements of the same quantities are 
well described by Student’s t distributions (see box, page 16). 
For Gaussian uncertainties, we would expect to follow the 

FIGURE 2 Observed cumulative frequencies with which two measurements disagree by more than 
zσ. The blue area is where independent scientific measurements typically lie; the grey area shows 
the region for measurements with possible shared biases. Challenging measurements can have 
even heavier tails: the observed distribution (in red) of measurements of Newton’s constant, G

N
, is 

very close to a Cauchy distribution.

FIGURE 1 Absolute differences between measurements of G
N
 and its current official CODATA 2014 

value of (6.67408 ± 0.00032) × 10–11 m3 kg–1 s–2, in units of the estimated uncertainty (σ) for each 
difference. One difference is 65σ, far off the top of the chart. The horizontal dotted lines are at 2 and 5σ.
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dashed green curve. But what is seen for typical scientific 
measurements are distributions with long power-law (1/zn+1) 
tails (with n around 2 or 3), far from Gaussian. Instead of less 
than one in a million, the chance of a greater than 5σ outlier can 
be more than one in 10, and is rarely less than 1%.

These broad distributions are not just because careless 
scientists sometimes make mistakes. Even the best 
researchers never completely understand their measurements, 
and since the best scientists tend to work at the cutting edge, 
they are more likely to run into trouble with new and subtle 
problems. The most discrepant Big G measurement in Figure 1 
is a 1996 result from a team at the national metrology institute 
of Germany. Despite their best efforts at the time, they could 
find no explanation for the 65σ disagreement. It took 8 years 
to identify the probable cause: overlooked variations in the 
electrical properties of an innovative component.

Other leading national metrology labs have had similar 
experiences. The US National Institute for Standards and 
Technology (NIST) reported many nuclear lifetimes that 
differed from results from other labs, until it was realised that 
a sample-positioning ring in the NIST equipment had been 
slowly slipping over several decades of use. A 9σ discrepant 
1999 value of Avogadro’s number by Japan’s national 
measurement lab, using a new method, was traced back to 
imperfections in the silicon crystals being studied.

New ideas produce new problems, so outliers can be 
the result of creativity instead of incompetence. The more 
independent a measurement is – with differences in people, 
methods, location, times, apparatus, software, or models 
– the more likely it is to disagree with other results. Less 
independent measurements, such as those using the same 
type of instrument under similar conditions, are usually 
much more Gaussian, with n as large as 10 and the chance 
of a 5σ outlier being lower than 0.1%. Such measurements 
have a high probability of sharing biases, so are likely to 
agree even when they are wrong. The best way to find such 
errors is to make measurements with different methods and 
improved precision.

Complex uncertainty
Every measurement comes with uncertainties from many 
sources. Scientists love statistical uncertainties due to random 
independent variations. Such uncertainties can be evaluated 
using well-established methods with strong theoretical 
foundations, and they become smaller and usually more 
Gaussian with repeated measurements.

Unfortunately, much uncertainty is associated with possible 
sources of bias in the complex systems associated with 
any scientific measurement. These uncertainties do not 
automatically become smaller with more data, and evaluating 
them is sometimes more art than science. Bias can occur in 
any aspect of a measurement, including wrong calibrations, 
non-random samples, misunderstood backgrounds, or 
inadequate theory.

Uncertainties associated with systematic errors are 
estimated using models that include everything known about 

Student’s t distributions
The generalised Student’s t distribution with n degrees of freedom
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tails; n = 1 is the Cauchy distribution where, roughly speaking, half the distribution 
is in the heavy tails.
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the measurement, but unknown systematic errors can produce 
large non-Gaussian outliers. As David Hand puts it: “Things 
which ought to be expected can seem quite extraordinary if 
you’ve got the wrong model”.2

Some outliers appear to be unavoidable consequences of 
Murphy’s law – “That which can go wrong, will go wrong” 
– acting on any complex system where many things can go 
wrong with consequences of all sizes. Failures in designed 
complex systems – from software to electrical grids to 
nuclear reactors – often have power-law distributions,1 so the 
observed heavy tails in scientific consistency should be 
no surprise.

These frequent errors are not due to any lack of effort to avoid 
them. Good scientists have “experimental paranoia” – the strong 
belief that the universe is conspiring to ruin their measurement. 
They take great care to verify and validate everything, and 
search for inconsistencies in their understanding. 

The best way to evaluate known systematic effects and detect 
unknown errors is to stress-test the measurement model by 
changing something in the apparatus, procedures or analysis, 

ABOVE Either what 
is measured or how 
it is measured can be 
complex: crowds of 
people or the ALICE 
detector at CERN.

and seeing if the new result is consistent with the model. 
Scientists change everything they can think of – time, people, 
samples, apparatus, temperature, software, and more – seeing 
how the system responds and constantly looking for unexpected 
results. The changes are made as extreme as possible without 
(usually) breaking anything too expensive. The uncertainty due 
to known systematic effects is evaluated based on the observed 
variations. The causes of any inconsistencies are investigated, 
and any systematic errors found are either fixed or their effect 
included in the reported uncertainty.

For example, measuring Big G is subject to myriad subtle 
problems. The gravitational force between known test masses 
must be measured, and this force is so small that it can be 
overwhelmed by a breath of air or a few stray electric charges. 
When Henry Cavendish made the first measurements of Big G 
in 1798, he noticed that the attraction between the masses 
slowly drifted during each measurement. Magnetism was 
not well understood at the time, so he wondered whether 
his test masses were being slowly polarised by the Earth’s 
magnetic field. He replaced some of the masses with actual 
magnets, and when no change in his result was seen he 
was confident that magnetism was not the problem. He had 
thought that temperature differences in his apparatus would 
be too small to generate problematic air currents, but to be 
sure he placed a thermometer in his lab and noticed that 
there was a small temperature increase over the duration of 
each measurement. He then added more thermometers and 
studied the temperature sensitivity by heating the masses with 
oil lamps and then cooling them with ice. This showed that the 
drift was associated with temperature differences between 
the masses and the surrounding case that were producing 
otherwise imperceptible air currents. Foreshadowing modern 
detector modelling, Cavendish also calculated the gravitational 
force exerted by the experiment’s mahogany case on the test 
masses to make sure this was not large enough to perturb his 
results. He took measurements in all weathers and with many 
other changes in his apparatus, and his final result included an 
uncertainty based on all the variations observed.

Erratic systematic effects can be particularly tricky to 
understand. Variations in a measurement of the Z boson mass 
at CERN, the European centre for particle physics, were initially 
larger than desired. The physicists had already corrected 
for subtle effects, such as the deformation of the particle 
accelerator due to monthly Earth tides and seasonal changes 
in local water levels, but only after additional monitoring did 
they notice fluctuations in the particle beam energy that were 
eventually matched with the local train schedule. Electrical 
currents from nearby railway lines, such as the Geneva–Paris 
TGV, were passing through the accelerator and changing 
the beam energy. Once understood, these effects could be 
corrected and the best mass resolution achieved.

Even when an inconsistency is noticed, however, it cannot 
always be understood. The reason for a discordant NIST value 
of Planck’s constant was never found despite the lab bringing 
in a completely new team to go over every component and 
procedure. Later measurements by the same group were 
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not anomalous; the unknown problem had simply gone away 
– a disquieting but familiar experience for many scientists.

Scientists try, of course, to design their measurements 
to be tolerant of known uncertainties and risks, but this can 
actually make them more sensitive to unknown problems.3 For 
example, you can reduce the temperature sensitivity of your 
apparatus by putting it inside an insulated box, but if that box 
vibrates because it resonates with the previously unnoticeable 
hum from your air conditioner, your shaken measurements 
may end up being much worse instead of better.

Precise, accurate, affordable – pick two
No amount of effort can ever prove that a measurement is free 
of every source of error, and no-one has infinite money or time, 
so choices must be made. Scientists must decide how to allocate 
resources between improving statistical precision (by taking 
more primary data) and reducing the chance of being wrong (by 
searching for systematic errors with more consistency checks).

Although better measurement precision improves 
understanding of systematic effects, it does not automatically 
reduce the heaviness of the uncertainty tails. Improved 
precision allows the signal to be examined and understood in 
more detail, possibly revealing undetected systematic errors, 
but it also means that unknown errors that were previously 
too small to matter can now become consequential. For 
every systematic effect newly understood because of better 
precision, a new unknown systematic error is likely to become 
important, leaving the shape of the uncertainty tail unchanged.

Rapidly improving precision can even lead to heavier tails, 
since there is less time to understand existing methods 
before they are replaced by more precise methods with new 
errors. This may be why uncertainties in physics often have 
heavier tails than in medical research.1 Constantly improving 
technology means that a new physics measurement is 
typically twice as precise as the best previous measurement 
of the same quantity. Improving precision in medicine can 
be expensive since halving the sampling error will require 

studying four times as many people at substantially greater 
cost, so new studies in medical research are frequently less 
precise than the best previous similar measurements.

Better precision also allows physicists to set tough 
“significance” criteria. Any discovery claim in particle physics is 
expected to be based on at least a 5σ effect, and although this 
convention evolved simply from a desire to keep the rate of 
false discoveries down to a manageable level, it also ensures 
that there is sufficient precision for internal consistency 
checks. It is hard to make statistically significant comparisons 
of subsets of a 2σ signal, but a 5σ signal can be sliced in many 
ways and checked for consistency. For example, physicists 
were confident in the discovery of the Higgs boson not just 
because the total signal was greater that 5σ, but because it 
was observed in two experiments, in data taken at different 
times and energies, and in multiple detection channels. 
Of course, even a 5σ “significant” signal can be wrong, as 
illustrated in recent years by 6σ reports of faster-than-light 
neutrinos and cosmic inflation that turned out to be the result 
of bad cables and background galactic dust. 

Diversity matters
Although outliers are usually considered bad, the absence 
of outliers can sometimes be worse. As noted long ago by 
Harold Jeffreys,4 if differences between nominally independent 
measurements appear to be Gaussian, it may just mean that 
they share most of their systematic errors, not that they have 
none. Different researchers using diverse and constantly 
improving methods should, when wrong, be wrong in different 
ways and disagree (see “The electron charge”).

As much as scientists would like to believe their 
experiments and models are accurate, all complex systems 
are subject to failure and some outliers are unavoidable. 
Scientists are generally good at estimating typical 
uncertainties, but are often hesitant to acknowledge the long 
tails of uncertainty that produce outliers. This reluctance is in 
part because, unlike the typical uncertainty σ, the exponent 
n of the uncertainty tail for an individual result cannot be 
evaluated by conventional methods. Instead of ignoring what 
we cannot calculate, however, it is better to use past history to 
predict how likely it is that a new measurement is wrong, and 
to accept that some outliers are an inevitable consequence of 
healthy scientific progress. n
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The electron charge
In 1913, University of Chicago physicist Robert Millikan published studies 
of charged oil drops, which showed that electric charge was quantised and 
determined the charge on the electron (e) with 15 times more precision than 
previous measurements. Over the next decade, Millikan and his current or former 
students published further results that agreed with this measurement, and 
Millikan was awarded the Nobel Prize in Physics in 1923. The first significant 
measurement by a different group did not come until 1928, after a new X-ray 
method for determining e was developed. Although the first new measurement 
(by a Chicago graduate student) agreed with Millikan’s value for e, subsequent 
measurements by other researchers did not. Either the oil-drop or X-ray method 
had an unknown bias, and both were subject to much scrutiny. By 1936 it was 
apparent that Millikan had used a slightly inaccurate viscosity of air, and with a 
new, more accurate viscosity value, the old oil-drop measurements were found to 
be consistent with the new X-ray results. By 1938 even Millikan agreed that his 
earlier values were wrong. A series of beautifully consistent results had shared 
a common bias that only became apparent when experiments were done by 
different groups using different methods.
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