Thermoremanence and Néel Temperature of Goethite

Özcdn Özdemir and David J. Dunlop
Geophysics, Physics, Erindale College, University of Toronto, Mississauga, Ontario, Canada

Abstract. We have measured thermoremanence (TRM) and the temperature dependence of high-field susceptibility \(\chi \), both parallel and perpendicular to the crystallographic c-axis, for a sample of well crystallized natural goethite (\(\alpha \text{FeOOH} \)). Susceptibility \(\chi_p \) measured perpendicular to the c-axis was almost temperature independent between 50 and 300 K, while \(\chi_p \) measured parallel to the c-axis increased almost linearly with temperature over the same range. These are the dependences expected for an antiferromagnetic (AFM) substance with sublattice magnetizations along the c-axis. Extrapolation of the \(\chi_p \) and \(\chi_p \) data trends to their point of intersection gives an estimate for the AFM Néel temperature \(T_N \) of (120 ± 2)°C. TRM's produced by cooling in a weak field applied either parallel or perpendicular to the c-axis had intensities of 2.4 \(\times 10^{-4} \) Am\(^2\)/kg and 1.2 \(\times 10^{-5} \) Am\(^2\)/kg, respectively. Since \((M_{TRM})_p \) is only 5% of \((M_{TRM})_l \), the weak ferromagnetism of goethite must be parallel to the AFM spin axis, not perpendicular to it as in the case of hematite. The ferromagnetism is very weak: TRM was unaffected by AF demagnetization to 100 mT and by thermal demagnetization to 90°C. Above 90°C, TRM decreased sharply, reaching zero at (120 ± 2)°C. Thus the ferromagnetic Curie point \(T_C \) coincides with \(T_N \) as in hematite. However, the weak ferromagnetism cannot be due to spin canting, as it is in hematite, because canting of the sublattices would produce a net moment perpendicular to the c-axis, rather than parallel to the c-axis as observed.

Introduction

Goethite (\(\alpha \text{FeOOH} \)), although a minor carrier of stable paleomagnetic remanence, is common in nature as a weathering product of iron-bearing minerals, particularly in soils and sediments. Goethite is antiferromagnetic (AFM), the sublattice magnetizations lying along the crystallographic c-axis. Its Néel temperature \(T_N \), determined from either the Mössbauer hyperfine field or the thermal variation of susceptibility, has been variously reported as 70°C to 170°C (Table 1).

Goethite also possesses a weak ferromagnetism below \(T_N \), perhaps because of unbalanced numbers of spins resulting from crystal imperfections (Van Oosterhout, 1965) or the presence of impurities (Hedley, 1971). Strangway et al. (1967) and Banerjee (1970) showed that goethite can acquire a weak but very stable thermoremanent magnetization (TRM). The TRM blocking temperature range extended up to 105°C (Banerjee, 1970) or 120°C (Strangway et al., 1967). Neither study used oriented crystals.

In the present study, we measured both temperature-dependent susceptibility and TRM as a function of orientation of the applied field \(H_0 \) with respect to the c-axis of goethite. Measurements on a single crystal or group of similarly oriented crystals are more informative than measurements on polycrystalline material because the ferromagnetism of goethite, like its antiferromagnetism, is highly anisotropic (Hedley, 1971). We were able to make a direct comparison between the AFM Néel temperature \(T_N \) (from susceptibility measurements) and the ferromagnetic (FM) Curie temperature \(T_C \) (from TRM). These proved to be identical: 120°C.

Sample Characterization

We used a museum-quality specimen of well crystallized natural goethite with obvious crystal elongation parallel to the c-axis. The orthorhombic goethite lattice is built of iron-centred oxygen octahedra linked in such a way as to form one-dimensional chains parallel to the c-axis. These chains are joined by sharing corners, such that each anion is common to three octahedra (Ewing, 1935). The hydroxyl bonds linking planes of oxygen atoms form zigzag chains, also parallel to the c-axis.

X-ray diffraction analysis of the sample using a Debye-Scherrer camera with Fe-Kα radiation and a silicon standard gave numerous reflections characteristic of goethite. The orthorhombic unit cell dimensions were determined to be a = 4.6 Å, b = 9.9 Å and c = 3.0 Å, in close agreement with standard values (ASTM data file 17-536).

The thermomagnetic curve had a broad and ill-defined minor peak just above 100°C (Figure 1). It was difficult to determine an accurate value for the AFM to paramagnetic (PM) transition temperature \(T_N \) from these M(T) data. Much more prominent is the drop in magnetization beginning around 250°C, as the goethite dehydrates to hematite (\(\alpha \text{Fe}_2\text{O}_3 \)) (Francombe and Rooksey, 1959).

Temperature Dependence of High-Field Susceptibility

Magnetic susceptibility \(\chi \) in a field \(H_0 = 0.1 \) T was measured every 10 K from 10 to 300 K using a superconducting susceptometer (MPMS at the Institute for Rock Magnetism, University of Minnesota). Goethite crystals were carefully oriented in two separate runs with their c axes either parallel (\(\chi_p \)) or perpendicular (\(\chi_p \)) to \(H_0 \) (produced by a superconducting solenoid).

<table>
<thead>
<tr>
<th>Type of sample</th>
<th>(T_N) or (T_C) (°C)</th>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic</td>
<td>70, 100 (\chi)-T curves</td>
<td>Szytula et al. (1966)</td>
<td></td>
</tr>
<tr>
<td>Synthetic</td>
<td>85 Mössbauer</td>
<td>Bocquet & Kennedy (1992)</td>
<td></td>
</tr>
<tr>
<td>Synthetic</td>
<td>91 Mössbauer</td>
<td>Koch et al. (1985)</td>
<td></td>
</tr>
<tr>
<td>Synthetic</td>
<td>94 Mössbauer</td>
<td>Dézsi & Fodor (1966)</td>
<td></td>
</tr>
<tr>
<td>Synthetic</td>
<td>97 Mössbauer</td>
<td>Hryniewicz & Kulgawczuk (1963)</td>
<td></td>
</tr>
<tr>
<td>Synthetic</td>
<td>105 TRM blocking</td>
<td>Banerjee (1970)</td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>120 TRM blocking</td>
<td>Strangway et al. (1967)</td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>120 Mössbauer</td>
<td>Van der Woude & Dekker (1966)</td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>120 Mössbauer</td>
<td>Mørup et al. (1983)</td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>120 (\chi)-T curves</td>
<td>This paper</td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>120 TRM unblocking</td>
<td>This paper</td>
<td></td>
</tr>
<tr>
<td>Synthetic</td>
<td>130 Mössbauer</td>
<td>Forsyth et al. (1968)</td>
<td></td>
</tr>
<tr>
<td>Synthetic</td>
<td>170 (\chi)-T curves</td>
<td>Van Oosterhout (1965)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Reported Néel and Curie Temperatures of Goethite

Copyright 1996 by the American Geophysical Union.

Paper number 96GL00904
0094-8534/96/96/GL-00904$05.00
temperature was almost flat (Figure 2). Susceptibility χ_{\perp} parallel to the AFM spin axis is theoretically zero because the torque $\mu_0 VM \times H_o$ vanishes. However, above 0 K, thermal energy increasingly perturbs the sublattice magnetizations M_A and M_B out of perfect parallelism or antiparallelism with H_o and χ_{\perp} is predicted to be proportional to T. Our data between 50 and 300 K confirm this prediction (Figure 2).

We also measured the susceptibility χ_{powder} of randomly oriented goethite crystallites in a powdered subsample (Figure 2). The predicted value of χ_{powder} at any temperature T is $(2/3)\chi_{\parallel} + (1/3)\chi_{\perp}$. Our data obey this relation when $T>150$ K, but are biased toward χ_{\perp} when $T<150$ K.

Linear extrapolations of the χ_{\parallel}, χ_{powder}, and χ_{\perp} data above 300 K intersect at a common point, pinpointing the AFM-PM transition. The Néel temperature T_N indicated by this method is (120 ± 2)$^\circ$C.

Thermoremanent Magnetization (TRM)

Total TRM's were produced in two separate runs by cooling a cm-size goethite sample from 150$^\circ$C to room temperature with a 1-mT (10 Oe) field H_o applied either parallel or perpendicular to the c-axes of the goethite crystals. (M_{TRM}) had an intensity of 2.4 \times 10$^{-4}$ Am2/kg, about 20 times greater than (M_{TRM}) (intensity of 1.2 \times 10$^{-5}$ Am2/kg). The capacity for TRM acquisition is very much greater parallel to the c-axis than perpendicular to it. In fact, TRM at the 5% level might be explained by minor misalignment of crystal axes perpendicular to H_o. We conclude that the FM M_A vector in goethite lies along the c-axis, parallel to the AFM spin directions or sublattice magnetizations M_A and M_B.

Figure 1. Thermomagnetic (strong field magnetization vs. temperature) heating curve of a goethite subsample. The broad minor peak just above 100$^\circ$C marks the AFM-PM transition, but does not pinpoint T_N very accurately. The strong decrease in magnetization between 250 and 320$^\circ$C is due to the αFeOOH \rightarrow αFe$_2$O$_3$ dehydration transformation.

Susceptibility χ_{\perp} perpendicular to the AFM spin axis is due to rotation of the spin sublattices by the torque of H_o and should be almost temperature independent (Nagamiya et al., 1955). In agreement with this prediction, our measured variation of χ_{\perp} with

Figure 2. Antiferromagnetic susceptibility measured at 10 K intervals during heating from 10 K to 300 K. χ_{\parallel}, χ_{\perp} were measured parallel and perpendicular to the goethite c-axis, respectively. χ_{powder} was measured for randomly oriented crystallites in a powdered subsample. The intersection of linear extrapolations of the χ_{\parallel}, χ_{\perp} and χ_{powder} data points the Néel temperature; $T_N = (120 \pm 2)^{\circ}$C.
natural goethites (e.g., Van der Woude and Dekker, 1966; Strangway et al., 1967; Mørup et al., 1983). Synthetic goethites, however, have given widely dispersed estimates of \(T_N \) (Table 1). Bocquet and Kennedy (1992) reported \(T_N = 85^\circ C \) for a synthetic goethite of submicron (12 nm x 49 nm) crystal size, attributing the low \(T_N \) value to the presence of lattice vacancies. Yamamoto (1968) reported size-dependent \(T_N \) values, ranging from 127°C for \(<1 \mu m \) crystallites to 92°C for 0.2 \(\mu m \) crystallites. It seems likely that these synthetic goethites were poorly crystallized.

Our data demonstrate that >95% of TRM in goethite is acquired parallel to the c-axis, which is the AFM spin axis. Although the production of TRM in goethite is well documented, the crystallographic control of TRM orientation is a new finding.

The weak ferromagnetism must have a different origin than the weak ferromagnetism of hematite. Above the Morin transition in hematite, \(M_A \) and \(M_B \) lie in the c-plane. Ferromagnetism results from a slight canting of \(M_A \) and \(M_B \) out of exact antiparallelism (Dzyaloshinsky, 1958). The FM spontaneous magnetization \(M_s \) of hematite therefore lies in the c-plane, perpendicular to \(M_A \) and \(M_B \).

In goethite, the strong TRM anisotropy we have observed proves that \(M_A \) is parallel to the A and B sublattice magnetizations \(M_A \) and \(M_B \). Spin-canting is therefore ruled out. Moriya (1960) has proposed on theoretical grounds that some orthorhombic crystals, specifically NiFe\(_2\), can exhibit spin-canting. The experimental evidence is in conflict, however, neutron diffraction indicating that \(M_A \) and \(M_B \) are deflected slightly away from the c-axis (Erickson, 1953) while nuclear magnetic resonance data imply that \(M_A \) and \(M_B \) are almost perpendicular to the c-axis (Moriya, 1960). Thus, spin-canting in orthorhombic crystals is unproven in general, and can definitely be ruled out in goethite on the basis of our measurements.

At the same time, the fact that \(T_C = T_N \) shows that the ferromagnetism and antiferromagnetism of goethite have a common origin. A magnetic impurity phase would have a \(T_C \) different from \(T_N \) and cannot be the cause of the ferromagnetism. In any case, non-magnetic impurities, such as Al\(^{3+}\) or Mn\(^{3+}\), because of their significantly different ionic radii, would distort the goethite lattice. For example, Al\(^{3+}\) has an ionic radius of 0.54 Å, much smaller than that of Fe\(^{3+}\) (0.645 Å), and would cause a reduction of the unit cell-edge parameter. Our measured X-ray cell-edge dimensions are in

Figure 4. Stepwise thermal demagnetization of TRM's produced parallel and perpendicular to the goethite c-axis. Both TRM's are unaffected by zero-field heating to 90°C but demagnetize completely when heated to 120°C. From these data, the best estimate of the goethite Curie temperature is (120 ± 2)°C.
excellent agreement with standard values, however (see sample characteristic section), showing that impurities are insignificant in our samples.

The likeliest mechanism for the parasitic ferromagnetism of goethite is spin imbalance, caused by lattice vacancies distributed randomly between the A and B sublattices. Although the vacancies are not ordered on a superlattice as in maghemite or pyrrhotite, random spin imbalance could still produce a measurable net magnetization \(|M_N - M_B| \).

Several specific mechanisms have been proposed.

i) The substitution of cations like \(\text{Mn}^{3+} \) or \(\text{Al}^{3+} \) in the FeOOH lattice would tend to destroy the perfect AFM balance between sublattices (Néel, 1949). Hedley (1971) found that increasing \(\text{Al}^{3+} \) content did correlate with larger FM moment in natural goethites, but even "pure" goethites had a measurable moment.

ii) Van Oosterhout (1965) suggested that goethite has a detect structure caused by water molecules in the crystal. The chains of AFM coupled ferric ions are interrupted by hydroxyl bonds.

iii) Banerjee (1970) proposed that weak ferromagnetism could result from broken links in the continuous AFM iron-oxygen-iron chains by lattice vacancies. Since the vacancies occur randomly, some of the broken links contain an odd number of antiparallel iron spins. Such links are responsible for the spin imbalance moment.

Conclusions

1. The weak ferromagnetism of our natural goethite sample is crystallographically oriented parallel to the c-axis, which is also the AFM spin axis.

2. The AFM Néel temperature \(T_N \) of goethite, estimated by extrapolation of 10-300 K \(\chi_T \) and \(\chi_m \) data, is \((120 \pm 2) \) °C.

3. The observed very stable TRM's parallel and perpendicular to the spin axis both had maximum unblocking temperatures of \((120 \pm 2) \) °C. This is our best estimate of the FM Curie temperature \(T_C \) of goethite.

4. \(T_N \) and \(T_C \) are identical for goethite: \((120 \pm 2) \) °C. The antiferromagnetism and ferromagnetism must have a common origin.

5. The ferromagnetism of \(\alpha\text{FeOOH} \) is not due to spin canted as in \(\alpha\text{Fe}_2\text{O}_3 \). It is probably due to unbalanced numbers of spins on the A and B sublattices, resulting from random lattice vacancies.

Acknowledgments. The specimen of well-crystallized goethite came from the collection of Dr. D.W. Strangway. The thermomagnetic curve was kindly measured by Dr. Koji Fukuda at Kyoto University. Other measurements were made at the Institute for Rock Magnetism, University of Minnesota, which is operated with assistance from the National Science Foundation and the Keck Foundation. We thank Drs. Subir Banerjee and Bruce Moskowitz for welcoming us as Visiting Fellows and Jim Marvin, Bruce Moskowitz and Christopher Hunt for help with the instruments and with setting up our experiments. This research was supported by the Natural Sciences and Engineering Research Council of Canada through research grant A7709 to D.J.D.

References

Özdemir Özdemir and David J. Dunlop, Department of Physics, Erindale College, University of Toronto, 3350 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6. (e-mail: ozdemir@physics.uwaterloo.ca)

(Received December 14, 1995; revised March 7, 1996; accepted March 8, 1996)