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Koji Fukuma and David J. Dunlop

Department of Physics, Erindale College, University of Toronto, Mississauga, Ontario, Canada

Abstract. A Monte Carlo method was applied for micromagnetic studies of two-dimensional
domain structures of a 1-um magnetite cube in zero field. By using this method we could
incorporate the effect of thermal agitation into micromagnetic modeling. Starting from an initial
single-domain structure (a saturated state), we obtained a closure domain structure with three body
and four closure domains. This structure is quite different from the checkerboard-like structure
obtained by a conjugate gradient method, and it gives a much lower energy and saturation
remanence ratio. An initial lamellar two-domain structure evolved into a vortex structure, which
was also reached from an initial quasi-vortex structure. Although such a vortex structure has a
lower energy than the closure domain structure, it was not attainable from an initial single-domain
structure at room temperature. The Monte Carlo method is effective in finding a path to escape
from unstable local energy minima and reach a stable local energy minimum, although not
necessarily a global minimum, at a given temperature. The structure corresponding to such a
stable local minimum should represent a realistic domain structure, comparable to what would be

attained in nature with the aid of thermal fluctuations of spins.

Introduction

In recent studies of magnetic domain structures the concept
of a local energy minimum (LEM) state has played a key role.
Moon and Merrill [1985] showed that several LEM states exist
for a given grain size and that these are separated by
sufficiently high energy barriers (specifically >>25-50 kT) in
their one-dimensional micromagnetic modeling. The
existence of several LEM states was expected to give an
explanation for the observed different domain structures for
the same grain depending on its magnetic or thermal history
[Halgedahl and Fuller, 1980, 1983]. Between theory and
observation, however, there was a large discrepancy in the
number of domains for a given grain size. The number of
domains predicted by theory was significantly greater than the
number observed [e.g., Moon, 1991]. The gap has become
narrower by more sophisticated micromagnetic modelings. Ye
and Merrill [1991] used a quasi-two-dimensional model, which
allows near-surface magnetization directions to become
parallel to the surface, to predict a smaller number of domains
for the same grain size than Moon and Merrill [1985] had
found. By wusing unconstrained two-dimensional
micromagnetic modeling, Xu et al. [1994] predicted that
closure domains should develop at surfaces, and the
equilibrium number of body domains was predicted to be only
two for 1-iwm or four for 5-um magnetite grains. The predicted
closure domain structures were recently observed for a large
magnetite crystal with precisely oriented viewing surfaces
[Ozdemir and Dunlop, 1993; Ozdemir et al., 1995].

The important effect of thermal fluctuations on
magnetization processes has long been recognized [e.g.,
Brown, 1979]. Thermal fluctuations of atomic spins cannot be
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ignored except for extremely low temperatures near absolute
zero. Most measurements of magnetic properties and domain
observations have been made near room temperature, but
micromagnetic calculations have not incorporated thermal
fluctuation effects explicitly. The stability of LEM states was
separately considered in the light of Boltzmann statistics in
one-dimensional [Dunlop et al., 1994; Enkin and Dunlop,
1987, Moon and Merrill, 1985] or constrained three-
dimensional micromagnetic modelings [Enkin and Williams,
1994]. Meanwhile, most unconstrained two- or three-
dimensional modelings have employed gradient methods for
energy minimization to find LEM states [e.g., Fabian et al.,
1996; Newell et al., 1993a; Williams and Dunlop, 1989; Xu et
al., 1994]. Such gradient methods allow only energy
decreases. They yield the LEM state that is nearest to an
arbitrarily chosen initial structure. In view of the many-valley
configuration space, however, it is quite possible that such
nearest LEM states correspond to shallow, that is,
thermodynamically unstable, valleys.

Thermal effects were first introduced into micromagnetic
modeling by using the simulated annealing method [Thomson
et al., 1994]. This method was developed by Kirkpatrick et al.
[1983] to search for the global maximum or minimum of a
function of many independent variables, although locating
such an equilibrium state is not necessarily guaranteed.
Thomson et al. [1994] found lower-energy structures by the
simulated annealing method for a cubic magnetite grain with 5
x 5 x 5 resolution than by a conjugate gradient method. When
considering magnetization structures, however, we need
structures corresponding to LEM states that are relevant to the
observed domain structure or measured magnetic properties at a
certain temperature. Monte Carlo methods, especially when
based on the Metropolis algorithm [Metropolis et al., 1953],
are useful techniques to incorporate thermal effects into
structure calculations. This approach allows us to obtain a
thermal equilibrium structure and to follow nonequilibrium
relaxation phenomena, which are interesting in view of the
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expected many-valley configuration for

micromagnetism.
In this paper we apply a Monte Carlo method to two-
dimensional micromagnetic modeling of a 1-um cube of

magnetite. The two-dimensional model, which divides the

space

iha + d
cube into a two-dimensional array of cells with finite lengths

and square cross sections but allows the magnetization in each
cell to rotate in three dimensions in space, was originally

developed by Newell et al. [1993a]. We followed the
coordinate system of Xu et al. [1994] in order to be able to
compare our results directly with theirs. Two-dimensional
modeling is far superior to one-dimensional modeling because
it allows magnetizations to rotate so as to satisfy the pole
avoidance principle [Brown, 1963] and enables closure
domains to form at surfaces. In comparison with three-
dimensional modeling [e.g., Williams and Dunlop, 1989],
two-dimensional modeling requires less computation time and
less memory. As the sizes of grains approach 1 um, the three-
dimensional LEM structures tend to become two-dimensional
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Model

In our model a cube of magnetite with linear dimension a = 1
um was subdivided into a two-dimensional array of 50 x 50
cells. The coordinate system was chosen following Xu et al.
[1994] (Figure 1). The y-z plane is the (110) plane, which is
energetically most favorable for a 180° Bloch wall in
magnetite [Lilley, 1950]. The viewing plane was set as the x-y
plane (112), perpendicular to the (110) plane, which contains
one of the <111> easy axes of magnetization. The
magnetization direction m; of each cell is given by the polar
angle 6, and the azimuthal angle ¢@;

m; = sin; cos @;x +sin 6; sin @;y +cos 6,z ¢))

x [110]

Figure 1. A model cubic grain and its crystallographic
orientation. The viewing surface is the x-y plane.
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where x,y, and z are unit vectors along the x, y, and z axes,
respectively.

The total magnetic energy E, for zero applied field is given
by the sum of the exchange energy E,, the magnetocrystalline

anisotropy energy E, and the demagnetlzmg energy E,;

Following Newell et al. [1993a], we can express E,, E,, and E;
as
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where A,K,, M, and 1, are the exchange constant, the
magnetocrystalline anisotropy constant, the saturation
magnetization, and the free-space permeability, respectively.
E,is calculated by assuming a linear change of spin directions
between neighboring cells i and j, as shown in (2a). At the
surface cells, E,is calculated so as to satisfy the boundary
condition, dmy/dn = 0 (see the appendix of Newell et al.
[1993a]). In (2b), ;, [3,-_ and y;are the direction cosines of m;
with respect to the three <100> crystal axes. When <111> are
the easy axes of magnetization as for magnetite, K; takes a

hava o
is set to have a minimum value of zero b "“’

negative value. E,
adding the constant term -K 1a3/3 in (2b), when m,; of all cells
are along a <111> easy axis of magnetization. In (2c), N,-jis
the demagnetizing tensor between cells i and j [Newell et al.,
1993b], which is calculated as the interaction of surface
charges of cells based on the method of Rhodes and Rowlands
[1954]. The reduced energy is given by the energy value
normalized by E = jt, M 2a*/6 for the single-domain state
along <111>. The magnetoelastic energy is not considered in
this model.

Monte Carlo simulation was performed as follows. First, an
initial magnetization m; was assigned for each of the 50 x 50
cells. The magnetization direction of one chosen cell was
perturbed into a randomly chosen direction by a randomly
chosen amount less than 5°. We calculated the difference in
total energy AE, caused by the perturbation and accepted the

perturbation with the transition probability W,

1 AE, <0

W= AE, )
st 4 >
exp( T ) AE, 20

where k is Boltzmann's constant and T is absolute temperature.
A perturbation is accepted or rejected by comparing W with a
randomly chosen number between 0 and 1. This is called the
Metropolis criterion, and it ensures that the system settles
down in a thermal equilibrium state after numerous trials.
Repeating such trial perturbations for each of the other cells
constitutes one Monte Carlo step (MCS).

We used the effective field [e.g., Berkov et al., 1993;
Schabes, 1991] to calculate the difference in the total energy
AE,in the course of the Monte Carlo simulation. For the
Metropolis algorithm we need only AE,, not E, itself, during
the optimization. Even in calculating only AE, the
demagnetizing energy is still a computationally intensive
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Figure 2. Energy change with Monte Carlo steps (MCS) for a 1-um magnetite cube with an initial single-
domain structure. The energy is presented as reduced energy normalized by the initial total energy. (a) Energy
change between 0 and 20,000 MCS. (b) Total energy change expanded for the range of 0.086-0.092 in reduced
energy value. (c) Energy changes enlarged for the interval 0-2,000 MCS. E,, E,, E,; and E, denote exchange,
magnetocrystalline anisotropy, demagnetizing, and total energy, respectively.

term if we calculate the interactions between the perturbed cell
and all other cells [Thomson et al., 1994]. Instead of
calculating such interactions we calculated AE, caused by a
perturbation of the magnetization direction m; by using the
effective field H;:

AE, = (minew _miold)'Hi “@
where

o 1 JE,
" MoVM, om;

It was advantageous to use the effective field in reducing the
computation time. Typically, we could reduce the computation
time to only about 5% of that necessary to calculate all the
interactions at each step.

Following Xu et al. [1994], we used four types of initial
structures in this study: quasi-vortex, single-domain, and
lamellar two- and three-domain structures. The initial quasi-
vortex structure was given by ¢; = tan"!(x/y) and ;= n/2 for
each cell, where (x, y) are measured with respect to an origin at
the center of the model cube. The lamellar structures with two
and three domains had walls of zero width placed at the
positions determined from the one-dimensional
nonmicromagnetic model of Xu and Merrill [1990]. In the case

of single-, two-, and three-domain structures the initial
magnetization directions were set along +y or -y directions
(i.e., [111] easy axes of magnetization). The material
constants, chosen for room temperature T = 298 K, were
A=1.32 x 10! J/m, M = 4.80 x 10° A/m, and K, = -1.25 x
10* J/m3. The computation was carried out with a KSR parallel
computer using 10 or 20 processors. Each structure took about
1 hour to calculate.

Results
Variations With Monte Carlo Steps

To determine whether the system had reached a thermal
equilibrium state, we examined the variation of E, E, E; and
E, with the number of MCS. In Figure 2, reduced values of E,,
E,, E, and E, have been plotted after every 100 steps, starting
from a completely uniform magnetization structure along the
[111] direction (i.e., a single-domain or saturated state). The
reduced total energy E, decreased rapidly with MCS within the
first few hundred MCS down to less than 0.2, after which
further changes became slow (Figure 2a). No further
significant change of E,was observed after about 8000 MCS,
and the range of fluctuation of E, was less than 0.1% of the
initial value (Figure 2b). We therefore suppose that the system
reached a thermal equilibrium state after about 8000 MCS.
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Figure 3. Variation of domain structures with the number of Monte Carlo steps (MCS) for a 1-iLm magnetite
cube, when starting from an initial single-domain structure. (a) Initial, (b) at 500 MCS, (c) at 2000 MCS, and

(d) at 10,000 MCS.

On the other hand, the three energy terms constituting the
total energy changed in different ways. E, and E, starting
from initial values of zero, increased rapidly in the first 100
steps and then decreased, whereas E; steadily decreased from
the initial value of unity (Figure 2c). Whereas E gand E
reached constant values at about 4000 MCS, E, increased
between 2000 and 4000 MCS, and then after 4000 MCS it
slowly decreased (Figure 2a). Between 2000 and 3000 MCS the
decrease of E;and E, was compensated by the increase of E,
so that E, remained almost constant. After 4000 MCS, E,
governed the slow change of E,.

The variations in domain structures with MCS from an
initial single-domain structure are shown in Figure 3. The
calculated 50 x 50 cells have been reduced to 25 x 25 cells in
order to have a simple presentation. Each arrow represents the
projection on the x-y plane of the magnetization direction
averaged over the four adjacent cells. The variation of
structures with MCS represents how an initial domain structure
relaxes into a final domain structure.

The initial uniform magnetization structure along [111]
(Figure 3a) became a complicated checkerboard-like pattern at
500 MCS (Figure 3b). This structure can be viewed as
consisting of four vortices and is similar to the final structure
obtained for a 5-pum magnetite cube using an initial single-
domain structure [Xu et al., 1994]. At the surface cells the
magnetizations were rotated to be parallel to the surfaces, and
at the four corners the magnetization directions lie along the

edge. Such features are favored, because they reduce magnetic
poles appearing at the surfaces, as would be expected from the
pole avoidance principle [Brown, 1963]. With this structure,
E, fell to 0.028 from 1.000 for the initial single-domain
structure. However, the exchange energy E, increased to a
value of 0.069 from the initial value of zero as a result of the
noncoherent structure. Also, E, had an increased value of
0.016, because magnetizations in many cells deviated from
the initial {111] easy axis of magnetization. Overall, the total
energy E, decreased greatly to 0.113, compared to the initial
value of 1.000, because of the large decrease in E )

As MCS proceeded, the four vortices observed at 500 MCS
coalesced in pairs to form two vortices elongated along the
[111] direction, while keeping the magnetizations at surface
cells parallel to the surface planes. By 2000 MCS the four
vortices had almost disappeared, and a closure domain
structure, consisting of three body domains capped with four
closure domains, emerged (Figure 3c). At 2000 MCS, E, further
decreased to 0.089 from 0.113 at 500 MCS. The decrease came
from the almost equal amounts of decreases in E,, E,, and E,
between 500 and 2000 MCS. The dissolution of vortices into a
closure domain structure made magnetization vectors more
parallel to each other in short and long ranges, reducing E, and
E,, and also made m; more nearly parallel to the [111] easy
axis, resulting in a decrease of E,,.

After 2000 MCS, E; was still decreasing until about 8000
MCS but very slowly (Figure 2a). In this interval the overall
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structure remained almost unchanged from the closure domain
structure seen at 2000 MCS (Figures 3c and 3d). In terms of
energy, E,and E,remained almost constant. Only E, changed
and influenced the value of E,. Such a change is interpreted as a
process of fine tuning: The magnetizations of adjacent cells in
the same domain changed their directions by small amounts to
become more nearly parallel to each other.

To obtain thermal equilibrium structures, we averaged the
structure over 1000 MCS in the interval in which the total
energy reached a constant value. In the case of the initial
single-domain structure we took the interval between 16,000
and 17,000 MCS as judged from Figure 2. When starting from
the quasi-vortex and lamellar two- and three-domain initial
structures, the relaxation was relatively fast, so that the
equilibrium structures were obtained by averaging between
5000 and 6000 MCS.

Final Domain Structures

The final domain structures obtained by the Monte Carlo
method were compared to those by a conjugate gradient
method for 1-um magnetite grains by using the same 50 x 50
cells and the same four initial states (Figure 4). We obtained
the results by a conjugate gradient method using the parallel
computer, and there are some differences from the structures
found by Xu et al. [1994].

With an initial quasi-vortex structure, the final vortex
structure by the Monte Carlo method (Figure 4a) is quite
similar to that by the conjugate gradient method (Figure 4b).
One minor difference is that the magnetization directions were
parallel to the edges at cells near corners, and at the center of
the cube the magnetizations deviated away from the viewing
plane to form a vortex line. Such features were found in vortex
structures by three-dimensional modelings for submicron
magnetite cubes [Williams and Dunlop, 1995]. Although the
energy difference between these two structures was small
(Figure 5), the Monte Carlo method gave a lower reduced total
energy (0.053) than the conjugate gradient method (0.062).
Both structures gave very low M, /M of 0.001.

The ultimate structures developed from an initial single-
domain structure were quite different between the two methods.
The Monte Carlo method gave a domain structure with three
body domains capped by four closure domains (Figure 4c) with
a low reduced total energy of 0.088 (Figure 5). This structure is
almost same as the structure obtained by using an initial
lamellar three-domain structure by Xu et al. [1994].
Meanwhile, the checkerboard-like pattern, which was found
for a 5-um magnetite cube by Xu et al. [1994], emerged from
the calculation by the conjugate gradient method (Figure 4d).
Although this structure had a lower energy of 0.328 (Figure 5)
compared to 0.680 for the structure with a single body domain
and four corner domains, which was obtained from an initial
single-domain state for a 1-um magnetite cube [Xu et al.,
1994], the energy is still much higher than that of 0.088 by
the Monte Carlo method. Also the checkerboard-like structure
resembles the intermediate structure at 500 MCS (Figure 3b) in
the course of relaxation. The final M, /M  values were 0.002
for the Monte Carlo method and 0.201 for the conjugate
gradient method. In the latter case the overall direction of
magnetization still remained almost along the initially
chosen [111] direction.

Starting from an initial lamellar two-domain structure, we
found a vortex structure (Figure 4e) with a reduced total energy

5139

of 0.052 by the Monte Carlo method. The value of final total
energy is almost the same as the value for the final vortex
structure (Figure 5). Also there seems to be no significant
difference between the two final structures (Figures 4a and 4e)
obtained from initial quasi-vortex and lamellar two-domain
structures. However, the M, /M value of 0.012 for the vortex
structure from the initial two-domain structure is significantly
higher than the value of 0.001 for the vortex structure from the
initial quasi-vortex structure, and the net direction is almost
perpendicular to the viewing plane. Such a difference is due to
the following characteristics. The magnetizations parallel to
the viewing plane cancel out each other by forming a single
curl, whereas the magnetizations perpendicular to the viewing
plane in the cells near the four corners and the center cancel
out with opposite senses (Figure 4a) or sum up with same
senses (Figure 4e).

By using the conjugate gradient method for an initial
lamellar two-domain structure we obtained a two-body-domain
structure with two associated large closure domains and a small
quasi-vortex at each corner (Figure 4f), as found by Xu et al.
[1994]. The reduced total energy was 0.139, which was higher
than the value 0.052 by the Monte Carlo method (Figure 5).
Xu et al. [1994] tested that their structure did not transform
into a vortex structure with lower energy by perturbing the
magnetization directions in the four corner cells within the
viewing plane. To check the transformation process, we tried a
simulation that accepted only decreases of energy (only
AE <0) resulting from perturbations. We again obtained a
vortex structure as seen in Figure 4e from the initial lamellar
two-domain structure, implying that the structure shown in
Figure 4f does not represent even a LEM state. In the vortex
structure, magnetization directions are almost perpendicular to
the viewing plane at the corner cells. Probably the
transformation of the initial two-domain structure into the
final vortex structure was induced by rotating the
magnetization away from the viewing plane, not within the
plane.

By the Monte Carlo method, starting from an initial
lamellar three-domain structure, we obtained a similar overall
domain structure with three body domains capped with four
closure domains (Figure 4g) as found by the conjugate gradient
method (Figure 4h). When the structures are compared in
detail, however, the magnetization directions at corners
deviate from the viewing plane, and the Bloch walls are
broader, extending over about 2 cells (=0.04 pum) in the case of
the Monte Carlo method. Such small-scale features are
associated with a significant difference in the reduced total
energy: 0.086 by the Monte Carlo method compared to 0.156
by the conjugate gradient method (Figure 5). By taking
account of the initially given zero-width walls and the
eventual approximate wall width of 0.04 um, close to the
estimate of 0.03 um using Landau and Lifshitz's [1935]
formula, the structure obtained by the Monte Carlo method
(Figure 4g) can be regarded as more realistic than that obtained
by the conjugate gradient method. The Monte Carlo method
also gave a lower M, /M_ of 0.007, compared to 0.114 by the
conjugate gradient method (Figure 5).

Discussion

By using a Monte Carlo method we have found lower energy
states for a 1-um magnetite cube than those obtained by a
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, b) quasi-vortex, (c, d) single-domain, (e, f)

, ¢, e, g) the Monte Carlo method and (b, d, f, h) the
lamellar two-domain, and (g, h) lamellar three-domain structures.

Figure 4. Comparison of final domain structures by (a
conjugate gradient method. The initial structures used are (a
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and (b) M, /M for a 1-tm magnetite cube.

conjugate gradient method from all four initial states: quasi-
vortex, single-domain, and lamellar two- and three-domains
(Figure 5). The resultant two-dimensional structures showed
reasonable fine features: Magnetizations were along the edges
near corners and deviated from the viewing plane at the center
of a vortex, and the domain walls have the widths expected
from theory (Figure 4).

To obtain the final structures, we employed a Monte Carlo
method based on the Metropolis algorithm. Conjugate
gradient methods have been used in most previous
micromagnetic studies [e.g., Fabian et al., 1996; Newell et al.,
1993a; Williams and Dunlop, 1989; Xu et al., 1994]. In
general, it is very difficult to escape from the nearest local
minimum by using the usual optimization techniques such as
the conjugate gradient method [Press et al., 1992]. Although
simulated annealing methods have demonstrated important
successes on a variety of global extremization problems and
have been applied also in micromagnetics [Thomson et al.,
1994], it is of particular interest to us to obtain domain
structures corresponding to LEM states starting from a specific

5141

initial state. The Monte Carlo method can locate a thermal
equilibrium LEM state near the initial state by incorporating
thermal agitation, avoiding capture by a possibly shallow
nearest local minimum. Instead of setting an arbitrary
criterion, which is usually determined on the basis of
computation time, we examined the energy variation with
MCS for each of the energy terms. After confirming that the
system does not show any further reduction of energy after a
certain number of MCS (Figure 2), we took the average
structure for an interval of 1000 MCS with nearly constant
energy in order to obtain the final structures. The Monte Carlo
method does not necessarily guarantee a thermal equilibrium
state under all conditions. When LEM states are separated by
high energy barriers, such a LEM state would show no further
energy change by small perturbations within a reasonable
computation time. However, such a state should correspond to
a stable (i.e., equilibrium) one for an appropriate choice of
temperature and timescale. Thus we can regard the final domain
structures obtained by the Monte Carlo method as being
realistic and comparable to domain structures that one would
expect to observe.

The four different initial domain structures converged to two
final types of structures. Initial quasi-vortex and lamellar two-
domain structures resulted in a final vortex structure (Figures
4a and 4e), and initial single-domain and lamellar three-
domain structures resulted in a closure domain structure with
three body domains capped by four closure domains (Figures
4c and 4g). Simulations employing the conjugate gradient
method gave four different final structures for the same four
initial structures (Figures 4b, 4d, 4f, and 4h). Some of these
structures were quite unlike those obtained by the Monte Carlo
method and had considerably higher energies (Figure 5).

Starting from the initial quasi-vortex and lamellar three-
domain structure, the conjugate gradient method gave final
structures almost identical to those obtained by the Monte
Carlo method (Figures 4a, 4b, 4g, and 4h). It is probable that
these final structures are the nearest or very near the
corresponding initial structures in configuration space,
judging from the similarity between the initial and final
structures and the rapid relaxation. On the other hand, the final
structures by the Monte Carlo method using initial single-
domain and lamellar two-domain structures differ from those
by the conjugate gradient method (Figures 4c, 4d, 4e, and 4f).
The relaxation is relatively slow in these two cases, and the
final structures are rather different from the corresponding
initial structures. Also an intermediate structure during the
Monte Carlo simulation resembles the final structure by the
conjugate gradient method (Figures 3b and 4d).

Such comparisons would favor a Monte Carlo method when
a final structure is obtained through a relatively long path in
configuration space. The two final structures obtained by the
conjugate gradient method from initial single-domain and
lamellar two-domain structures (Figures 4d and 4f) might
represent the states corresponding to the nearest shallow
energy minima. However, a simulation that accepted only
perturbations resulting in energy decreases also gave a final
vortex structure from an initial two-domain structure. This
result implies that the problem is not in the conjugate gradient
method itself but in the particular scheme of implementation
(e.g., the criterion for ending the iterations). This speculation
is supported by the fact that Williams and Dunlop [1990]
found a closure domain structure from an initial single-domain
state in their three-dimensional simulation with the conjugate
gradient method.
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The closure domain structure resulting from an initial
single-domain structure (Figure 4c) is particularly interesting,
because such a domain structure would represent the structure
for a saturation remanence state. Closure domains in magnetite
have been observed on an appropriate viewing plane by
Ozdemir et al. [1995], who pointed out their importance in
reducing the demagnetizing energy. Xu et al. [1994] obtained a
closure domain structure from an initial lamellar three-domain
structure in unconstrained two-dimensional micromagnetic
modeling. We obtained a closure domain structure unlike the
one-body-domain structure found by Xu et al. [1994] from the
same initial single-domain structure. We could not obtain a
metastable single-domain structure as observed for
titanomagnetite grains of several tens of microns [Halgedahl
and Fuller, 1980, 1983] or the U-shaped domain structure with
large remanent magnetization observed for a 1-m magnetite
grain [Geif3 et al,, 1996], both of which were observed in
saturation remanence states. A metastable single-domain
state, which was advocated to explain the high saturation
remanence in the pseudo-single-domain region [Halgedahl and
Fuller, 1980], has not yet emerged from modelings of a defect-
free 1-um magnetite cube. We obtained a much lower value of
M, /M  of 0.002 for a 1-um magnetite by using the Monte
Carlo method, compared to 0.201 (this study) or 0.640 [Xu et
al., 1994] by using the conjugate gradient method. However,
our predicted value seems rather too low in comparison with
experimental values, which range from 0.02 to 0.05 [Amin et
al., 1987].

The vortex structure is also interesting in two respects.
First, the vortex structure is not attainable from an initial
single-domain structure. Second, an initial lamellar two-
domain state is unstable and transforms into the vortex
structure. The final vortex structure gave the lowest energy for
the model 1-um magnetite cube we studied. Worm et al. [1991]
concluded that a vortex-like four-domain structure should be of
lowest energy for all multidomain grain sizes. However, in
principle, such a global energy minimum state is not
necessarily attainable from any point in a complicated
configuration space with many variables. The closure domain
structure from an initial single-domain structure never
converted into a vortex structure with lower energy even with a
very large number of MCS (Figure 2). This fact suggests that
high energy barriers, which cannot be overcome by thermal
energy available at room temperature, exist between a closure
domain structure and a vortex structure. The LEM state with the
closure domain structure should be a stable state of saturation
remanence at room temperature in 1-um magnetite cubes.
Meanwhile, the initial two-domain structure eventually
resulted in a vortex structure. A two-domain structure has often
been assumed in one-dimensional nonmicromagnetic
modelings [e.g., Butler and Banerjee, 1975] or assigned as an
initial structure in one-dimensional micromagnetic modelings
[e.g., Moon and Merrill, 1984]. Geif3 et al. [1996] reported
that two-domain states with relatively straight walls were
observed with a Bitter pattern method in magnetite grains
from 0.5 to 2.5 um in size. However, such small grain sizes
are near the resolution of the optical microscope, and they
noted that a large number of grains in this size range displayed
irregular Bitter patterns. As Fabian et al. [1996] pointed out
on the basis of three-dimensional modeling of magnetite
grains up to 0.23 x 0.63 pm, it is possible that a vortex
structure attracts a line of colloid and gives the appearance of a
two-domain state. The two-domain structure is unstable and
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easily converted to the vortex structure, so that it is unlikely
to exist for a 1-ium magnetite grain.

Conclusions

1. The Monte Carlo method gave lower energy states for a
I-um magnetite cube than the conjugate gradient method in all
cases using the same initial structures (quasi-vortex, single-
domain, and lamellar two- and three-domain structures).

2. Different initial states converged to an identical local
energy minimum state for a 1-jLm magnetite cube. Initial quasi-
vortex and two-domain structures evolved to a final vortex
structure, and initial single- and three-domain structures to a
final closure domain structure.

3. Starting from an initial single-domain structure (i.e., a
saturated state), we obtained a stable closure domain structure
with three body and four closure domains. There should be no
metastable single-domain state with large saturation
remanence in 1-im magnetite cubes.
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