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Toward a better understanding of the Lowrie-Fuller test

Song Xu and David J. Dunlop
Department of Physics, Erindale College, University of Toronto, Mississauga, Ontario, Canada

Abstract. We develop a theory of acquisition and alternating field (AF) demagnetization of anhysteretic
remanence (ARM) and saturation isothermal remanence (SIRM) in multidomain (MD) grains in order to
better understand the Lowrie-Fuller test. Our theory shows that the relative stabilities of low-field ARM and
high-field SIRM against AF demagnetization are determined by the distribution f{A,) of microcoercivity A, in
a sample, as found earlier by Bailey and Dunlop. When f(h) is nearly constant, weak-field ARM is more
resistant to AF demagnetization than SIRM. In contrast, when f(h_) varies exponentially or is a Gaussian
distribution, SIRM is more AF resistant than ARM. These contrasting stability trends are conventionally
called single-domain (SD)-type and MD-type Lowrie-Fuller results, respectively, but in reality, both types
occur in the MD size range. We propose instead the descriptive terms L-type result (low-field remanence,
i.e., ARM, more stable) and H-type result (high-field remanence, i.e., SIRM, more stable). The Lowrie-
Fuller test does not distinguish one type of domain structure from another, but it does depend indirectly on
grain size. We show that the distribution f{A_) in a given sample is determined primarily by the grain size d
and the dislocation density p. A nearly constant f{h.) occurs in grains with small d and/or p, but a Gaussian
flh,) is approached with increasing d and/or p. The transition from L-type to H-type behavior in the Lowrie-

Fuller test occurs at a critical grain size d, ~ 2/(pw), where w is the domain-wall width. The lower the
dislocation density, the larger the transition size in the Lowrie-Fuller test. This simple relationship explains
the increase in the transition size from about 5-10 um observed for crushed magnetite grains to = 100 pm for
hydrothermally grown magnetites, which have lower dislocation densities than crushed grains.

Introduction

The Lowrie-Fuller test [Lowrie and Fuller, 1971] has been
widely used in paleomagnetism to distinguish whether the carriers
of remanence in a rock sample are mainly single-domain (SD) or
multidomain (MD) grains. As proposed by Lowrie and Fuller
[1971], the relative stability against alternating field (AF)
demagnetization of thermal remanence (TRM) carried by SD grains
should decrease with an increasing inducing field, H,, but the AF
stability should increase for MD grains. Since TRM approaches
saturation isothermal remanence (SIRM) when H,, is sufficiently
large, a simple form of the test is to compare the relative AF
stabilities of TRM and SIRM: For SD grains, TRM is more resistant
to AF than SIRM, and for MD grains the opposite occurs. In
practice, one may replace TRM by anhysteretic remanence (ARM)
and observe a similar trend [Dunlop et al., 1973; Johnson et al.,
1975].

Grains larger than the critical SD size also exhibit SD-type
behavior in the Lowrie-Fuller test. For example, Hartstra [1982]
and Bailey and Dunlop [1983] observed SD-type behavior for
crushed magnetite grains < 10 um (Figure 1) (the critical SD size of
magnetite is ~ 0.1 pm). This result is usually attributed to so-called
pseudo-single-domain (PSD) behavior of small MD grains.
Recently, a surprising result was reported by Heider et al. [1992],
who observed SD-type behavior up to 100 um for their hydro-
thermally grown magnetites (Figure 1). The result is surprising not
only because 100 pm is far beyond the reasonable PSD size range
for magnetite but also because the grown magnetites used by Heider
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et al. are magnetically softer than crushed magnetites, according to
hysteresis measurements [Heider et al., 1987]. Therefore one would
expect the PSD to MD transition size for the hydrothermal mag-
netites to be smaller than for the crushed magnetites, rather than
larger.

The underlying mechanism of the Lowrie-Fuller test is still not
clear, in part because of our poor understanding of the origin of
magnetic stability in PSD grains. Bailey and Dunlop [1983]
suggested that the result of the Lowrie-Fuller test is controlled
mainly by the shape of the Ar demagnetization curve, which is
determined by both the internal demagnetizing field and the
distribution of intrinsic microcoercivities in a sample. They found
that an AF demagnetization curve that decays superexponentially
usually gives the SD-type result, and in contrast, one that decays
subexponentially usually gives the MD-type. However, it is not
clear how this changeover relates to such intrinsic factors as grain
size and defect state.

Failure of domain-wall nucleation, leaving a grain in a metastable
SD-like state, might also be responsible for the SD-type behavior of
PSD grains. Following Fuller [1984], TRM in PSD grains may be
controlled largely by a few grains in SD-like states that have
difficulty nucleating walls. In contrast, when SIRM is produced
after applying a saturating field, a relatively large population of
grains remain in SD-like states, but wall nucleation can occur in a
relatively small AF. Consequently, SIRM may be less stable to AF
demagnetization than TRM, leading to the SD-type Lowrie-Fuller
result. It is hard to imagine, however, that hydrothermal magnetites
= 100 pm in size can remain in metastable SD-like states of reman-
ence. Furthermore, it is not at all clear why the hydrothermal
magnetites of Heider et al. [1992], with a low dislocation density,
should have a larger transition size from SD-type to MD-type
Lowrie-Fuller results than crushed magnetites, as shown in Figure
1.
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Figure 1. The variation of the ratio of the median destructive field
(MDF) of ARM (MDF, ) to MDF; . with grain size d for crushed
magnetite grains from Hartstra [1982] (triangles) and Bailey and
Dunlop [1983] (squares) and for hydrothermally grown magnetite
grains from Heider et al. [1992] (circles). The transition size d,
defined by MDF,, /MDF; = =1is = 10 um for Hartstra's samples,

~ 5 um for Bailey and Dunlop's samples, and = 100 um for Heider
et al.'s samples.

In this paper, we model theoretically the behavior of PSD and
MD grains in the Lowrie-Fuller test. In particular, we relate the
result of the Lowrie-Fuller test to grain size and dislocation density
of a sample. This is done by first considering the effect of grain size
and dislocation density on the distribution of microcoercivities that
pin walls and then calculating the relative stabilities of ARM and
SIRM against AF demagnetization. In a later section, we discuss the
effect of wall nucleation on the Lowrie-Fuller result.

Microcoercivity Distributions in MD Grains

The microcoercivity distribution plays an important role in
determining the relative stability of remanence against AF demagnet-
ization in the Lowrie-Fuller test. Early MD TRM theory [Néel,
1955; Stacey, 1962; Schmidt, 1973, 1976] was developed using a
series of identical, closely spaced energy barriers that impede the
motion -of walls. The resulting microcoercivity &, which is a
measure of the maximum slope of a given energy barrier, has a
single value, independent of TRM intensity. Consequently, when
TRM is induced in a large H , we have a large demagnetizing field
(> TRM intensity) but the same h_. This results in a TRM whose
AF stability decreases as H, increases. The Lowrie-Fuller test for
MD grains should therefore bc of SD-type, a paradoxial conclusion
at odds with the intent of the Lowrie-Fuller test. More realistic
microcoercivity distributions were considered by Bailey and Dunlop
[1983]. By combining theory and experiment, they concluded that
the Lowrie-Fuller test is of SD-type or MD-type depending on
whether the microcoercivity distribution flh) varies slower or
faster than an exponential decay function.

The distribution of 4, in real grains depends on both grain size
and defect density. For example, consider dislocations, which are
the most likely source of wall pinning in magnetite [Xu and Merrill,
1992; Moskowitz, 1993]. In a cubic grain of size d, the total number
n, of dislocation lines is pdz, p being the dislocation density
(number per unit area). When r, is small, the pinning of individual
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walls is likely by individual dislocations. Then the resulting f(h_)
represents the distribution of h, associated with individual
dislocations, which is expected to be relatively constant over a range
of h, from zero to a maximum value 2H, (H, is the mean of this
random distribution). The variation of 4, can be caused by such
factors as the length of a dislocation and the angle between a
dislocation line and the wall plane [e.g., Xu and Merrill, 1989]. In
contrast, when n, is large, individual walls are likely to be pinned by
many dislocations simultaneously. In this case, the pinning of
individual walls is determined by the fluctuation in the number of
dislocations from place to place within a grain. Then fh.)
approaches a Gaussian distribution.

As an illustration of the transition of f{h;) from a random (i.e.,
a flat) distribution to a Gaussian distribution with increasing n, we
calculated f{h_) for an ensemble of cubic grains with given d and p.
In the calculation, each grain in the ensemble contains n, = pd?
dislocations whose strengths in pinning a wall and locatlons within
the grain are randomly distributed. The resulting f{h) should be
close to random for the grains with small d and/or p in which each
wall interacts only with individual dislocations. However, with
increasing d and/or p, we should see f{k,) approaching a Gaussian
distribution. The detailed calculation is given in the appendix.

Calculated f{k,) distributions are plotted versus h/H, in Figure
2. H_is the mean microcoercivity defined as

M

In all cases shown in Figure 2, the shape of flh) is well
characterized by a single parameter n, given by pwd, which
represents the average number of dislocations in a wall. Forn =
0.05 « 1 (Figure 2b), the distribution is essentially level with f{h,) =
U(2H) (0 < h, <2H ). With increasing n, f{h ) changes gradually
from random to Gaussmn fh,) is already Gaussian by n=5. The
dislocation densities used in the calculation were p = 101, 1012, and
101m2 forn=0.1, 1, and 10 in the 10-pm grains and for n = 0.5,
5, and 50 in the 50-um grains, respectively, and p = 101%™ for n
= 0.05 in the 50-pm grains. For crushed magnetites, p typically
ranges from 10'2 to 10™m2, and for the hydrothermally grown
magnetites, p was reported to be 3 x 101°m2 [Heider et al., 1987].

The transition of k) from a random to Gaussian distribution is
illustrated further in Figure 3. In Figure 3, the reduced mean
microcoercivity is normalized to the value of H, for a random
distribution. For n < 2, the reduced H,, is close to 1 and f(h) is close
to random. When n>2, H_is </ and f(h,) is Gaussian. For a
given p, the transition size d, from random to Gaussian is therefore
given by

d,~ —. )

As will be shown later, d, plays an important role in determining the
SD-type to MD-type transition in the Lowrie-Fuller test.

In subsequent sections, we examine the effect of f{#.) on AF
stability of ARM and SIRM. We use three types of f(h,), given as
follows:

1
Random I 2 h.<2H,, (32)
. 2 1 k. )2
Gaussian - exp | -—| =<5 (3b)
f( c) nH P T (H ]
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Figure 2. The distributions of microcoercivities calculated for (a)
10-um and (b) 50-pm grains with different dislocation densities,
where n is the average number of dislocations in a wall and p is the
dislocation density. When n is small, the microcoercivity
distribution f(h,) varies relatively slowly with microcoercivity 4.
When n is large, f{h,) approaches a Gaussian distribution.

f(h )_ L exp - i
Exponential ¢ H c H,

The exponential distribution is included because of its importance
in the study by Bailey and Dunlop [1983].

It is actually more convenient in the calculation to use the
cumulative distribution F(h,), defined as

(3¢)

“

which is directly related to the AF_demagnetization curve by
replacing the argument 4, of Fby H (H is peak AF). Specifically,

Pe ) 1 et| e Cep| Ll ®
2HL, \/_ﬂ_Hc H

F(hc)=( 1-
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for random, Gaussian, and exponential distributions of h. given in
(3), respectively. In (5), erf is the error function. The three types of
F(h,) given in (5) are plotted in Figure 4 and resemble AF
demagnetization curves. In both (3) and (5), the mean
microcoercivity H, may be taken as the bulk coercivity of a sample
[Xu and Merrill, 1990].

Weak-Field ARM

We will first consider weak-field ARM, in which the wall makes
only a single jump away from or toward the demagnetized state. In
weak-field ARM, we assume that the wall is displaced a distance x
from its demagnetized (M = 0) position over a single energy barrier
into the neighbouring potential well. However, the internal
demagnetizing field will drive the wall some distance up the side of
this well toward the M = 0 well, with the result that its maximum
displacement x,,, is always is less than A, the wavelength of energy
barriers or the spacing between the bottoms of adjacent wells. The
ARM will be AF demagnetized when the wall makes a single
Barkhausen jump toward the demagnetized state. The same
approach was used by Bailey and Dunlop [1983].

The requirement for using this approach is that the maximum wall
displacement x_,, in the ARM state is smaller than the average
wavelength A of the energy barriers in the given grain. We can
relate x .. to the ARM biasing field H,, as follows. During ARM
acquisition, the equilibrium wall position x,, is determined by the
balance between H,, and the demagnetizing field NM, 7= 2x, qNM/d,
where M is the saturation magnetization and N is the demagnetizing
factor, hereafter taken to be constant for any given grain. The actual
x in the ARM state will be < X,qa8a wall tends to fall back toward
its demagnetized position upon the removal of H,. Thus, taking
Xmax = Xegq WE have

X i H, 6)
d 2NM,

Stacey [1963] gave a statistical estimate of A =3w , and Xu and
Merrill [1989] found A = Sw for the most effective pinning of a wall

10 —r—rrrrrr——rrrrry S—— 1
=2 ."C,
=
<]
@
© ;
o
8 b4
£
c Q
S
®
£
® | O
8 g (o .
B
[3)
[
l P 2l A adaaaal Acdddaal AdAL
0.01 0.1 1 10 100

Number of dislocations/wall, n=wpd

Figure 3. Mean microcoercivity H, as a function of n. The reduced
values of H, plotted are normalized to the H, value for a random
distribution of h.. When n > 2, H, > y/n (i.e., slope 1/2), as
expected for a Gaussian distribution. When n < 2, the reduced H,
is close to 1 and the corresponding f(h,) is close to a random
distribution.
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by an energy barrier. As an estimate, we take A ~ w, and since x,,
< A, we have from (6)

H,d<2wNM . @)
Inequality (7) indicates the ranges of H, and d in which the single
energy barrier approach is reasonable. For magnetite (M, = 480
kA/m, N = 1/3 for equidimensional grains and w = 0.1 pm), we
require H,, < 4mT, when d = 10 um or H, < 0.4 mT, when d = 100
pm.

The ARM intensity M, . of an individual grain is always equal
to or less than the induced magnetization M,, = H /N. When H,, is
turned off, the wall will jump back to its demagnetized position in
the M =0 well if & _ is less than the demagnetizing field NM,, 0= Hy
that is, when h < H,. If h,> H, the wall will remain pinned in the
neighboring well, giving an ARM intensity of H/N. Here the
movement of a wall around the bottom of a local energy well is
assumed to be small and is therefore ignored. For an ensemble of
grains with a distribution of £, the total intensity of ARM is
obtained by integrating over f{k ):

HO - HO
Mm=—N— ff(hc)dhc=——F(HD). ®)
Hn
In reality, it is not~just H, but the sum of H, and the AF, H, that
drives the walls. H can have a magnitude >> H, but positive and
negative values are equally probable. Thus only the net field H is
effective, and (8) gives the statistical average value of ARM.
Consider now the AF demagnetization of the ARM given in (8).
During AF demagnetization, h, works against both the
demagnetizing field NM eq = H,and the peak AF H. Ifh, < H +
H,, the wall is unpinned and the corresponding ARM is AF
demagnetized (with the single energy barrier approach). Otherwise,
the wall remains pinned and the ARM intensity is unchanged. Thus,
by replacing H,, byﬁ + H,, in the lower integral limit in (8), we
obtain the total ARM intensity as a function of H for an ensemble
of grains. A normalized AF demagnetization curve of ARM is
therefore given by
Mol H)
M

®

Fla,+ )
0) FiH,)

am

where M, (0) is the ARM before AF demagnetization as given by
8).

Therefore, within the weak field range, an exponential distribu-
tion of k, given by (3c) results in Mmfﬁ)/Mm(O) - exp(—ﬁ/Hc) for
any H , which is a null Lowrie-Fuller test. Any superexponential
distribution of 4, such as random and Gaussian distributions given
by (3a) and (3b), respectively, gives a SD-type Lowrie-Fuller result,
and in contrast, any subexponential distribution gives a MD-type
result. The same conclusion was reached by Bailey and Dunlop
[1983].

Within the weak-field range, the difference in AF stabilities of
two ARMs induced in Hy; and Hy,, respectively, is actually very
small; it is of the order of (Hy, - Hy)/H,, as can be seen by
expanding (9) in a Taylor series in terms of H /H,. If we neglect all
higher-order terms of H /H,, in the expansion, we have from (9)

M_(H .

~ F(H). (10)
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Figure 4. The cumulative distributions of microcoercivities given
in equation (5). F(h,) resembles an AF demagnetization curve.

Thus the normalized AF demagnetization curve coincides with the
cumulative distribution of 4, as given by (5) and plotted in Figure
4.

We can determine the median destructive fields MDF, | from (5)
and (10). They are H_, 0.845H , and 0.693H . for random, Gaussian,
and exponential distributions, respectively. These values of MDF,
will be compared in the following section to the corresponding
MDF,,... In the above, we did not consider the magnetic screening
effect of soft walls. The screening will reduce the intensity of a
remanence by a screening factor e (< 1) but will increase the MDF
by the same factor [Moon and Merrill, 1986; Xu and Dunlop, 1993].
Because of the screening, the values of MDF/H_ we obtain will be
smaller than actual experimental values for magnetite samples,
particularly for samples that contain large grains and/or have a small
dislocation density [Xu and Dunlop, 1993]. However, we will be
mainly concerned with MDFann/MDFSim, which is a measure of the
Lowrie-Fuller result and should not be significantly affected by the
screening.

Strong-Field ARM and SIRM

SIRM can be considered as a saturated ARM induced in a
sufficiently large H,, When H, is large, individual walls will
encounter multiple energy barriers during AF demagnetization. For
any given H, the maximum number of energy barriers that a wall
may encounter is

Moy _i’_ an

TAM NAM'

where M, q is the equilibrium magnetization with H  turned on and
AM is the change in magnetization when a wall undergoes a
Barkhausen jump across an energy barrier. We take AM to be
constant for a grain of given size. The acquisition of ARM is
modeled by assuming that after the AF is reduced to zero but before
H, is turned off, the magnetization of a grain is equal to M, 4 and the
wall is at the m th barrier. When H,, is turned off, the wall may be
driven back by the demagnetizing field to the i th barrier, where i <
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m,and M, . < M . During AF demagnetization, the wall is driven
back further and a complete demagnetization occurs when the wall
reaches i = 0.

In our model, the difference between the acquisition of ARM and
that of isothermal remanence (IRM) induced in the same H,, is in the
wall position before H,, is turned off: During the acquisition of
IRM, the wall usually cannot reach the m th barrier but is blocked at
an intermediate barrier that has h, > H, (unless H,, is a saturating

field). In contrast, during the acquisition of ARM, the wall is able’

to cross all intermediate barriers with the aid of the AF and always
reaches the m th barrier.

Because of the distribution of H_,, the position of a particular wall
or the value of i in the ARM state has to be determined statistically.
For a wall to be pinned at the i th barrier, a necessary condition is
that all the barriers from i + 1 to m are unable to pin the wall. The
sufficient condition is that &, associated with the i th barrier is larger
than the demagnetizing field iINAM. Statistically, we can write the
probability p; that a wall is pinned by the i th barrier as

pe I (p) [ e,

- ﬁ (1-p)FUNAM),

Jiel (12)

where P is the probability that the wall is pinned by the j th barrier
and therefore (1 - p;) is the probability that the wall is not pinned.
The product in (12) represents the probability that the wall is not
pinned by any of the barriers between i + 1 and m. The function F
in (12) represents the requirement that /2, must be larger than the
demagnetizing field iNAM at the i th barrier, so that the wall will not
be driven back to the barrier i - 1. Equation (12) is a recurrence
formula and is started with p, given by

pn-F(H,), 13)
which is the probability that the wall is pinned at the m th barrier
(ie., for h, 2 NM, eq = H_,). Consequently, the total ARM intensity

for an ensemble of grains is
m

M, -AMY ip,,

i=1

(14)

where i4M is the magnetization when a wall is pinned at the i th
barrier. In (14), M, is dependent implicitly on H, through p,.
When H,, is sufficiently large, M, approaches M, as will be
seen below.

For a given f{h ), an ARM acquisition curve can be calculated
using (12) to (14). An example is shown in Figure 5. One
adjustable parameter in the calculation is H /(N4 M), taken to be 10
in the example shown in Figure 5. This parameter may be taken as
a grain size indicator. Now AM o< 1/d, but H, decreases slower
than 1/d as seen from bulk coercivity data as a function of grain size
[e.g., Dunlop, 1986]. Therefore the value of H /(N4M) increases
with increasing grain size.

For a given H/(NAM), both the saturation field of ARM and the
SIRM intensity are largest for an exponential f(i,) and the smallest
for a random f(k,), as seen in Figure 5. This trend results from the
fact that with multiple energy barriers, both the saturation field and
the SIRM intensity are determined mainly by the largest s, among
the m barriers that individual walls encounter. That is, they are
determined mainly by the microcoercivities in the tail region of a
given flh,) or equivalently F(h,). The tail is largest for an exponent-
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Figure 5. ARM acquisition curves calculated using equation (14)
for the three types of f{h,). ARM is normalized to the change in
magnetization, AM, when a wall undergoes a Barkhausen jump, and
the DC biasing field, H,, is normalized to the change in internal
demagnetizing field, NAM, resulting from AM.

ial f(h,) and smallest for a random f{h,) among the three types of
fh,) considered (see Figure 4).

It is interesting to note that the MDF, = values obtained in the
previous section vary in the opposite way: MDF,  is smallest for an
exponential (i) and largest for a random f{h ). At the first glance,
this is inconsistent with what one might expect: a sample with a
small MDF,  should be more easily saturated, or vice versa. This
apparent inconsistency can be understood by noting that MDF,
determined from (10) is a measure of the median value of f(h,),
while the saturation field is a measure of the maximum A, in the
distribution. For a given type of f(k,), the two parameters do vary
coherently with H,, or with grain size as in most real samples.
However, this is not necessarily the case when f{k_) changes from
one type to the other, as we see in Figure 4.

Consider now the AF demagnetization of the ARM given by (14).
After AF demagnetization at a peak field H , the probability that a
wall is pinned at any given energy barrier decreases, because s, now
has to work against not only the demagnetizing field but also H. At
the i th barrier in particular, the probability g, that a wall is pinned
can be written, following (12), as

m

g,-I1 (1 - q)FliNaMeA).
Jeiel

(15)

In (15), the product represents the fractional number of walls that
have jumped to the i th barrier from barriers with j > i after AF
demagnetization, and the function F represents the condition that &,
must be sufficiently large to pin a wall at the i th barrier. The main
difference between (12) and (15) is in the argument of F. The
recurrence of (15) is started with
I 19
which is similar to (13). Consequently, the normalized AF demag-
netization of ARM is given by
iq
a a7

ip;

i-1
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where M, . (0) is the ARM before AF demagnetization. For a given
fh), Mm.m(l-i WM, (0) in (1 7) can be determined numerically as a
function of H,/H, and H/H,, with one adjustable parameter
H_J(NAM) which serves as a grain size indicator, as discussed
above.

The AF demagnetization curve of SIRM can be calculated by
setting H, to a sufficiently large value that M, (0) is saturated. In
the cases shown in Figure 5, M, (0) is well saturated at H, J/H.=10.

The multiple energy barrier model developed above is different
from the model used by Bailey and Dunlop [1983] in examining the
Lowrie-Fuller test in MD grains. The model we have developed is
a statistical model, in which the pinning of a wall at a particular
energy barrier requires h, > NM (+ H after AF demagnetization)
with A obeying a given distribution function. In contrast, the model
developed by Bailey and Dunlop [1983] is an equilibrium model, in
which the wall position and thus M are determined by an equilibrium
condition &, = NM (+ H). Inan equilibrium model, applying H >
h, - NM implies a complete demagnetization for a given wall.
However, in our statistical model, the application of the same H
simply pushes a wall to the next energy barrier and does not
necessarily mean a complete demagnetization. Thus a wall in our
model is given choices for a range of h, values as the wall moves
back to its demagnetized position and therefore is more likely to
exhibit a MD-type Lowrie-Fuller result as we will see in the next
section. Once the problem is reduced to a single energy barrier, the
two models are almost identical, and they give the same result, as in
the case of weak-field ARM discussed in the previous section.

Finally, it should be pointed out that in our model, an implicit
assumption is that the &, values associated with individual energy
barriers are independent of each other; therefore the probability of
having a microcoercivity /4, at any location in a grain is the same as
at any other location, all being represented by flh,). The same
assumption was used in calculating the distribution of 4, earlier in
the paper.

Comparison Between Weak-Field
ARM and SIRM

In this section, we compare the AF demagnetization curves of
weak-field ARM and SIRM. Figure 6 shows the normalized AF
demagnetization curves of ARM and SIRM determined respectively
from (10) and (17) for H /(NAM) = 10. The Lowrie-Fuller test is of
SD type for the random distribution but MD-type for the exponential
and Gaussian distributions.

This changeover from SD-type to MD-type can be understood as
resulting from the competition between the demagnetizing field and
microcoercivity. Following the argument by Lowrie and Fuller
[1971], the demagnetizing field H ;is larger for SIRM than for weak-
field ARM. On the other hand, a wall in the SIRM state is more
likely to encounter a large h, when the wall moves toward a
demagnetized state during AF demagnetization. The largest h, that
a given wall can possibly encounter is determined largely by
microcoercivities in the tail region of a given f{h,); the tail is largest
for an exponential f{h;) and smallest for a random fhy), as we
discussed in the previous section. For a random distribution,
therefore, the demagnetizing field effect is dominant and SIRM
demagnetizes more readily than weak-field ARM (SD-type result).
For Gaussian and exponential distributions, the maximum micro-
coercivity encountered by a wall is more important, and SIRM is
accordingly harder to erase than weak-field ARM (MD-type result).

The relative AF stabilities of ARM and SIRM also vary with the
parameter H_/(NAM) and thus with grain size (Figure 7). For a
given fih), MDF,  /MDF,  decreases with increasing H JINAM),
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Figure 6. Normalized AF demagnetization curves of weak-field
ARM and SIRM calculated from equations (10) and (17),
respectively, for the three types of k). The Lowrie-Fuller test is of
SD-type for a random distribution, while it is of MD-type for
Gaussian and exponential distributions.
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Figure 7. The ratio of MDF, . /MDF =~ as a function of

H_J/(NAM), and thus grain size, for the three types of flh,).
H_/(N4M) is mean microcoercivity H, normalized to the change in
internal demagnetizing field NAM, resulting from a Barkhausen
jump. The relationship of this parameter to grain size is explained
in the text. The Lowrie-Fuller test is of SD-type for a random
distribution and of MD-type for an exponential distribution. For a
Gaussian distribution, it is of MD-type for magnetite grains > 1 pm
(see discussion in text). '

i.e. with increasing grain size. Note that MDF, /H, is actually a
constant for a given f{k,) (see calculations following (10)). Thus the
patterns seen in Figure 7 reflect an increase in MDF; /H_ with
increasing H/(NAM). This increase occurs because a large
H_/(NAM) (H_ being constant) implies that a wall at SIRM has to
cross a large number of energy barriers and thus is more likely to
encounter a large , before reaching its demagnetized position.

For a random distribution, the Lowrie-Fuller test is always of SD-
type with MDF,  /MDF;  decreasing to the asymptotic value 1 as
H_/(NAM) increases. In contrast, it is always of MD-type for an
exponential distribution, contrary to the previous result by Bailey
and Dunlop [1983]. For a Gaussian distribution, the Lowrie-Fuller
test changes from SD-type to MD-type at H /(NAM)= 5. Here, the
value H J(NAM) can be seen as representing an average number of
energy barriers encountered or Barkhausen jumps made by a wall
from its SIRM to demagnetized position. If we take 2w as the
average wavelength of the energy barriers, we have the MD-type for
magnetite grains with grain size d > 5x2w = 10w = 1 pm, provided
that f(h,) in the grains is Gaussian.

Understanding the Lowrie-Fuller Test
in Real Samples

The result of the Lowrie-Fuller test depends strongly on the
distribution of microcoercivities in grains in a given sample, as
illustrated in Figures 6 and 7. Two important parameters that
determine the A, distribution are grain size d and dislocation density
p. In small grains with a low dislocation density, individual walls
interact with individual dislocations, and thus we expect fik) to vary
slowly with A, With increasing ¢ and/or p, the number of
dislocations that a wall encounters increases. In the limit, f(h.)
approaches a Gaussian distribution. The changeover in flh) is
actually quite sharp as shown in Figure 3, and it occurs at d,pw = 2
(equation (2)). Thus, as a first-order approximation, the result of the
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Lowrie-Fuller test is determined by
SD-type dpw <2
MD-type dpw>2 (18)

The lower the dislocation density, the larger the transition size in the
Lowrie-Fuller test.

The simple relationship given in (18) provides an explanation for
the experimental data shown in Figure 1. For hydrothermally grown
magnetite grains, the dislocation density is low, and therefore the
transition size is large, compared to the crushed magnetite grains.
A quantitative estimate using (18) gives a transition size d, < 20 pm
for crushed magnetite grains with p > 10?2 m? (w=0.1 pm), which
is comparable to the observed values in Figure 1. For the hydro-
thermally grown magnetites, p = 3x1010 m2 [Heider et al., 1987]
corresponds to d, ~ 700 pm, which is larger than ~100 um observed
(Figure 1). The overestimate may be attributed to the assumption of
the wall area ~ d? used in deriving (18), which is a reasonable
approximation only for small grains.

Effect of Domain Nucleation

In the theory developed above, the number of domains in a given
grain is assumed to be constant. It is possible, however, that the
number of domains in a grain changes during AF demagnetization
or between ARM and SIRM states. It has been found
experimentally [Halgedahl and Fuller, 1983; Halgedahl, 1991] that
the number of domains in some titanomagnetite grains is different in
different remanence states. In particular, the number of domains is
usually smallest when in an SIRM state and increases after AF
demagnetization, indicating that domain nucleation takes place
during AF demagnetization of SIRM.

Suppose that the AF stability of ARM (or SIRM which is an
ARM induced in a saturating H) is determined predominantly by
the critical AF, H , that triggers domain nucleation. At a given
nucleation site in a grain, we can write

A -h,-H,, (19)
where h is the anisotropy field and H, is the demagnetizing field.
The value of h, is dependent on the anisotropy imposed by crystal
defects as well as the magnetocrystalline anisotropy and exchange
energies at the nucleation site. At a given nucleation site, /, can
reasonably be assumed to be constant, independent of the number of
domains or domain wall displacement. The role of 4, in (19) is the
same in domain nucleation as in wall pinning; it works against 4, (in
domain nucleation) or 4, (in wall pinning) and tends to bring a grain
closer to a demagnetized state. Following (19), when an. ARM is
induced in a large H , H is large and therefore H , is small. Thus,
if domain nucleation is a predominant factor in determining the AF
stability of ARM, we expect a SD-type Lowrie-Fuller result. The
same conclusion was reached by Fuller [1984], based on consider-
ation of domain nucleation in grains in SD-like metastable states.

Therefore domain nucleation may provide an alternative explan-
ation of the SD-type Lowrie-Fuller result observed in MD grains of
magnetite in the PSD size range (1-10 um). If so, the transition

‘observed in Figure 1 for crushed magnetites around 10 pm would

mark the changeover in the dominant coercivity mechanism from
nucleation in the smaller grains to wall pinning in larger grains.
Particles that contain walls but which have difficulty in forming
additional walls, as well as metastable SD particles, could be
nucleation controlled. Nucleation would also account for the initial
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plateau in some PSD AF demagnetization curves. The threshold for
AF demagnetization would be set by nucleation.

The very large transition size (= 100 pm) observed in
hydrothermally grown magnetites is probably not due to nucleation,
however. The 100-pum hydrothermal magnetites have extremely low
Mg /M, values, which are unlikely to be associated with
nucleation. Also because of the relatively low dislocation density,
we expect that the average anisotropy field &, will be larger but H,
will be smaller for the grown magnetites than for crushed grains of
similar size. Thus we expect the coercivity to be governed by wall
pinning.

How Useful Is the Lowrie-Fuller Test?

The Lowrie-Fuller test was intended as a quick method of
distinguishing between SD and MD carriers of natural thermal
remanence. The test was based on measurements made at opposite
extremes of the magnetite size spectrum. Lowrie and Fuller [1971]
observed that in millimeter-sized single crystals, course poly-
crystalline aggregates and =250-um sieved crystal fragments, strong-
field TRM was more stable to AF demagnetization than weak-field
TRM. Previously published data [Rimbert, 1959; Dunlop and West,
1969] showed that the opposite was true for single-domain
magnetite (< 0.1 um). It was therefore natural to associate these AF
characteristics with MD and SD grains respectively, although just
why MD and SD grains should behave in these ways remained
contentious [Dunlop and West, 1969; Schmidt, 1976].

To be useful in paleomagnetism, the test must have
discriminating power in the intermediate-size magnetites commonly
found in rocks. Lowrie and Fuller had pointed out a possible gray
area: grains larger than critical SD size but too small to contain well-
formed domain walls. Dunlop et al. [1973] and Johnson et al.
[1975] demonstrated that in fact the test (now modified to use ARM
instead of TRM) gave a SD-type result for magnetites and maghem-
ites well above critical SD size. Later, Hartstra [1982] and Bailey
and Dunlop [1983] showed that magnetite grains as large as 10 um
still gave SD-type tests, in spite of having MD structure [e.g., Heider
etal., 1988].

It would have been logical at this point to abandon SD-like and
MD-like as descriptions of observed AF trends. This did not
happen, for several reasons.

1. Hysteresis properties and TRM intensities of magnetite
showed gradual decreases over a broad size range extending up to
about 10 um [Parry, 1965], above which they were more or less
constant. This was taken to be a confirmation of Stacey's [1962,
1963] ideas about pseudo-single-domain (PSD) behavior in MD
grains, with the PSD-MD threshold being =10 pm.

2. Magnetite grains around 10 pm in size were sometimes
observed to remain in metastable SD states, especially in SIRM, but
to nucleate walls in small fields during demagnetization [Boyd et al.,
1984]. These could be mechanisms for SD-like AF responses.

3. Magnetite grains of 10 pm size are still small enough to
plausibly carry paleomagnetically stable and reliable remanence.
Thus, even though the reason for a changeover in Lowrie-Fuller
characteristics around this size was unclear, the test was still of
practical utility.

This picture of the Lowrie-Fuller test as a discriminator between
PSD magnetites, with stable SD-like remanence, and MD magnet-
ites, with highly mobile walls and unstable remanence, became
untenable when it was discovered that magnetites with low internal
stress have size-dependent hysteresis properties [Heider et al., 1987]
and yield SD-type Lowrie-Fuller tests [Heider et al., 1992] in grains
as large as 100 um (see Figure 1). These grains are only slightly
smaller than the 250-um magnetites whose AF response defines the
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MD end-member in the Lowrie-Fuller test. Equilibrium domain
widths of =30 um are observed in magnetites of this size [Ozdemir
and Dunlop, 1993]. Accordingly one would expect metastable SD
states to be rare, and none have been reported. The 100 um magnet-
ites are very soft to AF demagnetization, and it is doubtful that they
carry any trustworthy paleomagnetic remanence. The Lowrie-Fuller
test, in low-stress magnetites, discriminates between two classes of
large, soft grains; it works at the wrong end of the grain size scale,
paleomagnetically speaking.

The Lowrie-Fuller test does not reflect domain structure per se.
Grains in metastable SD states could account for a SD-like AF
response in =10-um magnetites, but they are unlikely to do so in
=~100-um magnetites. Domain nucleation during AF demagnet-
ization would tend to produce a SD-type test, but.wall motion, not
wall nucleation, should govern AF response in low-stress
magnetites. We propose replacing the terms "SD-type" and "MD-
type", which imply a well-understood connection between AF
response and domain state, by "L-type" (low-field remanence more
stable) and "H-type" (high-field remanence more stable), which
describe what is actually observed in the test.

What then causes L-type and H-type responses in conventional
MD grains, i.e., those in which walls move but are not created or
annihilated? There are three factors: (1) the microcoercivity
spectrum, which changes from a random to a Gaussian distribution
as increasing grain size d and/or dislocation density p cause wall
pins to change from a single defect to multiple defects; (2) the
internal demagnetizing field; and (3) the wall displacement (high-
field remanences push walls past many pinning sites, with a higher
probability of encountering strong pinning). None of these factors
is closely correlated with the number of domains. Even the role of
grain size is indirect, because it is the product pd, not d alone, that
governs the microcoercivity distribution.

The single most important factor is the change of f{h_) from
random to Gaussian as pd increases. A random distribution always
yields an L-type test (Figures 6a and 7), whereas a Gaussian
distribution produces an H-type test (Figures 6b and 7). (In
principle, a Gaussian distribution can produce an L-type test if d is
below ~1 pum (Figure 7) but provided p <2x103m?, n=pwd<2 and
a random distribution prevails (Figure 3).) For reasonable
dislocation densities, grain size has to be quite large to produce wall
pinning by several dislocations simultaneously, to form a Gaussian
microcoercivity distribution (i) and result in an H-type test. This
explains the rarity of H-type tests in real rocks [Lowrie and Fuller,
1972; Dunlop, 1983].

Does the Lowrie-Fuller test have any practical utility? The
answer is yes, with two provisos.

1. It must be clearly understood that the test results do not
directly indicate domain structure. Many different structures,
including "true" MD grains, can give a so-called SD-type (or L) test.

2. Comparisons must be made within a suite of rocks with similar
states of internal stress. In general, an H-type test is grounds for
rejecting a sample, but an L-type test is not necessarily proof of
paleomagnetic stability. More information is required about the
stress state of the magnetite grains and their size distribution.
Unfortunately, this information is difficult to obtain.

Finally, we note that little is understood, experimentally or
theoretically, about the AF responses of minerals other than
magnetite and maghemite or their correlation with hysteresis and
domain structure. High-titanium titanomagnetite (TM60), hematite,
and pyrrhotite are prime candidates for investigation, particularly
TM60 because of the rich variety of studies of domain nucleation
and metastable states in this mineral [Halgedahl and Fuller, 1983;
Halgedahl, 1991].
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Conclusions

1. MD grains may exhibit either an L (or SD-type) or an H (or
MD-type) result in the Lowrie-Fuller test, depending on the type of
microcoercivity distribution f(h,) in the grains, as suggested earlier
by Bailey and Dunlop [1983]. If fh_) is approximately a random
distribution, an L-type test results. In contrast, if f{(h,) is Gaussian,
an H-type test results.

2. The transition size d, from the L-type to the H-type test result
varies with the defect density. For dislocations, d, = 2/(pw), where
p is the dislocation density and w is the wall width. Thus d,
increases with decreasing p, as observed (Figure 1). A quantitative
estimate gives d, < 20 um for crushed magnetites with p > 102m2,
comparable to the values observed. The value calculated for
hydrothermally grown magnetites is d, ~ 700 um, which is larger
than the ~100 pm observed, probably because of an overestimate of
the wall area used in our calculation.

3. SD-type behavior is expected for grains in which AF stability
is controlled by domain nucleation. Although this mechanism
provides an alternative explanation for the SD-type behavior
observed for <10 um crushed magnetites, domain nucleation fails to
explain the experimentally observed increase in the transition size d,
with decreasing dislocation density.

4. The Lowrie-Fuller test does not diagnose domain structure, but
in a suite of rocks of similar stress state, it is a useful indicator of
relative grain size and likely paleomagnetic stability.

Appendix: Calculation of the Microcoercivity
Distribution

The following steps were taken in the calculation of the micro-
coercivity distribution f{k,) for an ensemble of cubic grains with a
grain size d and a dislocation density p:

1. The number of dislocations n, in each grain was taken to be
pdz. The pinning strength of each dislocation was chosen randomly
between -1 and +1, where the + sign represents the sign of the
Burgers vector of a dislocation. Here, the unit and maximum
magnitude of the pinning strength are unimportant, because the
resulting 4, is always plotted by normalizing to the mean micro-
coercivity H,..

2. The location of each dislocation in a given size grain was also
chosen randomly between O to d.

3. Given a distribution of n, dislocations following steps 1 and 2,
the magnitude of A, at any given location in a grain was taken to be
equal to the sum of the pinning strengths of any dislocations in the
vicinity +w of that location, where w is the wall width and 2w is the
approximate interaction range between a 180° wall and a single
dislocation [Xu, 1989]. We took w = 0.1 um as in magnetite. The
magnitude of &, was calculated at intervals of 2w from 0 to d.

4. A statistical distribution i) was obtained by repeating steps
1 to 3 for a large number of grains, all having the same grain size
and dislocation density but different distributions of dislocation
locations and strengths. The actual number of grains used for
obtaining f{h,) was 2.5x10'%/(pd), where p and d are in units of m
and pm, respectively. It ranges from 5000 for 50-pym grains with p
=1013m2 (n = 50 in Figure 2b) to 2.5x10° for 10-um grains with p
=10m?2 (n =0.11in Figure 2a).

Finally, it should be pointed out that the distribution of the
pinning strengths of dislocations in real grains can be more complex
than the random distribution we used in step 1; it will depend on the
distributions of the orientations of dislocation lines and Burgers
vectors with respect to the wall plane. However, a random distribu-
tion is a good first order approximation for grains in which the
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dislocation lines and Burgers vectors have no particular favored
direction.
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