Note on Posted Slides

- These are the slides that I intended to show in class on Wed. Jan. 9, 2013.
- They contain important ideas and questions from your reading.
- Due to time constraints, I was probably not able to show all the slides during class.
- They are all posted here for completeness.

Chapter 3 Pre-Class Reading Question

- What does a speedometer measure?
A. distance traveled
B. average speed
C. instantaneous speed
D. velocity
E. acceleration

- If you wish to message me on facebook I have an account and would be glad to add you as a friend
- Search on "Jason Harlow Physics" or go to:
- www.facebook.com/harlowphysics
- Also, if you message me your UTORid I will add you to a facebook discussion group just for this class, so you can keep in touch with your classmates better!

Chapter 3 Reading Question: The Fine Print...

- Galileo's definition of speed was a breakthrough because he is acknowledged to be the first to consider \qquad .
A. distance covered
B. mathematics
C. direction
D. time

Suggested End of Chapter Items

- On the course web-site under "Materials", I have posted suggested end-of-chapter questions and problems for you to study for chapters 2, 3 and 4.

Chapter 2
Review Questions: 9, 14, 17, 21
Ranking: 1, 2, 3, 4
Exercises: 13, 14, 23, 24, 39, 40
Problems: 1, 2, 3, 4

Chapter 3

Review Questions: 4, 7, 10, 24 Plug and Chug:
$2,4,9,12,15,17,20$
Ranking: 1, 2, 3, 4
Exercises: 1, 2, 35, 36, 39, 40 Problems: 3, 4

PHY205H1S
Physics of Everyday Life
Class 2

- Motion Is Relative
- Speed : Average and Instantaneous
- Velocity
- Acceleration
- Free Fall

Joke: Why Did the Chicken Cross the Road?

Aristotle (330 BC):

"Because it is the nature of chickens to cross roads."
Newton (1687):
"Because there is no external net force causing the chicken's velocity across the road to change."
Einstein (1905):
"Is the chicken crossing the road, or is the road moving under the chicken?"

Discussion Question

You are on an Eastbound subway train going at $20 \mathrm{~m} / \mathrm{s}$. You notice the Westbound train on the other track. Relative to the ground, that Westbound train has a speed of $20 \mathrm{~m} / \mathrm{s}$. What is the velocity of the Westbound train as measured by you?
A. $40 \mathrm{~m} / \mathrm{s}$, West
B. $20 \mathrm{~m} / \mathrm{s}$, West
C. zero
D. $20 \mathrm{~m} / \mathrm{s}$, East
E. $40 \mathrm{~m} / \mathrm{s}$, East

Speed

- Defined as the distance covered per amount of travel time.
- Units are meters per second.
- In equation form:

$$
\text { Speed }=\frac{\text { distance }}{\text { time }}
$$

Example: A girl runs 4 meters in 2 sec . Her speed is $2 \mathrm{~m} / \mathrm{s}$.

Motion Is Relative

Motion of objects is always described as relative to something else. For example:

- On the subway you are moving at $50 \mathrm{~km} / \mathrm{h}$ North relative to the platform.
- The person sitting across from you is at rest relative to you
- The station platform is moving at $50 \mathrm{~km} / \mathrm{h}$ South
 relative to you

Caught Speeding

Paraphrased from famous discussion in The Feynman Lectures on Physics, Vol. 1 by R.P. Feynman, R.B. Leighton and M. Sands ©1964 by Addison-Wesley]

- Officer: "Lady you were going 75 kilometres per hour in a 50 zone."
- Lady: "I'm sorry officer, but that can't be. I've only been driving for 5 minutes."
- Officer: "No, no. What I mean is, if you had continued driving at that speed for 1 hour, you would go 75 kilometres."
- Lady: "I'm sorry officer, but that's not true. If I had continued driving at that speed, I would surely have crashed into that wall at the end of the street."
- Officer: "Here's your ticket, explain it to the judge!"

Average Speed

- The entire distance covered divided by the total travel time
- Doesn't indicate various instantaneous speeds along the way.
- In equation form:

Example: Drive a distance of 200 km in 2 h and your average speed is $100 \mathrm{~km} / \mathrm{h}$.

Average Speed
 CHECK YOUR NEIGHBOR

The average speed of driving 30 km in 1 hour is the same as the average speed of driving
A. 30 km in $1 / 2$ hour.
B. 30 km in 2 hours.
C. 60 km in $1 / 2$ hour.
D. 60 km in 2 hours.

Instantaneous Speed

Instantaneous speed is the speed at any instant.

Example:

- When you ride in your car, you may speed up and slow down.
- Your instantaneous speed is given by your speedometer.

Velocity

- A description of
- the instantaneous speed of the object
- what direction the object is moving
- Velocity is a vector quantity. It has
- magnitude: instantaneous speed
- direction: direction of object's motion

Acceleration

Formulated by Galileo based on his experiments with inclined planes.

Rate at which velocity changes over time Acceleration is a vector

Slope downward-

Slope upwardSpeed decreases

No slope-
Does speed change?

Speed and Velocity

- Constant speed is steady speed, neither speeding up nor slowing down.
- Constant velocity is
- constant speed and
- constant direction (straight-line path with no acceleration).

Motion is relative to Earth, unless otherwise stated.

Acceleration

Because velocity is a vector, it can change in two possible ways:

1. The magnitude can change, indicating a change in speed, or
2. The direction can change, indicating that the object has changed direction.

Example: Car making a turn

Acceleration

In equation form:

$$
\text { Acceleration }=\frac{\text { change in velocity }}{\text { time interval }}
$$

Unit of acceleration is unit of velocity / unit of time.
Example:

- You car's speed right now is $40 \mathrm{~km} / \mathrm{h}$.
- Your car's speed 5 s later is $45 \mathrm{~km} / \mathrm{h}$.
- Your car's change in speed is $45-40=5 \mathrm{~km} / \mathrm{h}$.
- Your car's acceleration is $5 \mathrm{~km} / \mathrm{h} / 5 \mathrm{~s}=1 \mathrm{~km} / \mathrm{h} / \mathrm{s}$.

Acceleration Direction for Linear Motion

- When an object is speeding up, its velocity and acceleration are in the same direction.
- When an object is slowing down, its velocity and acceleration are in opposite directions.
- Direction can be specified with + or - signs.
- For example, something with positive velocity and negative acceleration is slowing down.
- Something with negative velocity and positive acceleration is also slowing down!

Acceleration Direction

- While the car is coasting, what is the direction of the acceleration vector of the car?
A. to the right.
B. to the left.
C.zero.

Acceleration
 CHECK YOUR NEIGHBOR

An automobile is accelerating when it is
A. slowing down to a stop.
B. rounding a curve at a steady speed.
C. Both of the above.
D. Neither of the above.

- A car starts from rest, then drives to the right. It speeds up to a maximum speed of $30 \mathrm{~m} / \mathrm{s}$. It coasts at this speed for a while, then the driver hits the brakes, and the car slows down to a stop.
- While it is speeding up, what is the direction of the acceleration vector of the car?
A. to the right.
B. to the left.
C.zero.

Acceleration Direction

- While the car is slowing down, what is the direction of the acceleration vector of the car?
A. to the right.
B. to the left.
C.zero.

Acceleration

Galileo increased the inclination of inclined planes.

- Steeper inclines gave greater accelerations.
- When the incline was vertical, acceleration was max, same as that of the falling object.
- When air resistance was negligible, all objects fell with the same unchanging acceleration.

- Average: $9.799 \mathrm{~m} / \mathrm{s}^{2}$
- For Problem Sets, Tests and the Exam in this class: let's use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$

Free Fall

Falling under the influence of gravity only

- with no air resistance
- Freely falling objects on Earth accelerate at the rate of $10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, i.e., $10 \mathrm{~m} / \mathrm{s}^{2}$
- The exact value of the free fall acceleration depends on altitude and latitude on the earth.

Free Fall—How Fast?

The velocity acquired by an object starting from rest is

Velocity $=$ acceleration \times time

So, under free fall, when acceleration is $10 \mathrm{~m} / \mathrm{s}^{2}$, the speed is

- $10 \mathrm{~m} / \mathrm{s}$ after 1 s .
- $20 \mathrm{~m} / \mathrm{s}$ after 2 s .
- $30 \mathrm{~m} / \mathrm{s}$ after 3 s .

And so on.

Free Fall-How Far? CHECK YOUR NEIGHBOR

What is the distance covered of a freely falling object starting from rest after 4 s ?
A. 4 m
B. 16 m
C. 40 m
D. 80 m

So, under free fall, when acceleration is $10 \mathrm{~m} / \mathrm{s}^{2}$, the distance is

- 5 m after 1 s .
- 20 m after 2 s .
- 45 m after 3 s .

And so on.

Three Equations of Constant Acceleration

 (Good to put on your note-card)1. $v_{\mathrm{f}}=v_{\mathrm{i}}+a t$
2. $d=v_{\mathbf{i}} t+\frac{1}{2} a t^{2}$
3. $d=\left(\frac{v_{\mathrm{i}}+v_{\mathrm{f}}}{2}\right) t$
traveled is related to the initial speed times time plus half the acceleration times time squared.
This means the change in speed is the acceleration times the time elapsed.

This means the distance

This means the distance traveled is the average speed times time.

Example (Problem 3 from

Chapter 3)

a. What is the instantaneous velocity of a freely falling object 10 s after it is released from a position of rest?
b. What is its average velocity during this 10 s interval?
c. How far will it fall during this time?

Free Fall Acceleration Direction

- When the bird is momentarily stopped at the top of its path, what is the direction of the acceleration vector of the bird?
A.up.
B. down.
C.zero.

Before Next Class

- Please read Chapter 4 on Newton's Second Law of Motion
- Note - Tutorials begin this Wednesday, Friday and Monday - go there for marks and to pick up your first problem set

- While the bird is going down (but before I catch it), what is the direction of the acceleration vector of the bird?

A.up.

B.down.
C.zero.

