## Note on Posted Slides

- These are the slides that I intended to show in class on Mon. Feb. 4, 2013.
- They contain important ideas and questions from your reading.
- Due to time constraints, I was probably not able to show all the slides during class.
- They are all posted here for completeness.

### PHY205H1S Physics of Everyday Life Class 8: **Solids**

- Atoms, Elements
- Molecules, Compounds
- Crystal Structure
- Density
- · Elasticity
- · Tension and Compression
- Arches
- Scaling





## Chapter 12. Pre-Class Reading Question

- According to Hooke's law, if you double the force when stretching a spring, the elongation of the spring is normally
- A. no different, the same
- B. twice as much
- C. half as much
- D. four times as much

## Chapter 12. Pre-Class Reading Question

- · Which has the greater outer surface area?
- A. An elephant
- B. An ant
- C. neither





## Chapter 12. Pre-Class Reading Question

- Which has the greater outer surface area per volume?
- A. An elephant
- B. An ant
- C. neither



### Atoms

- · Atoms are the building blocks of all matter
- They are too small to be seen with visible light
- One gram of water has a volume of 1 cm<sup>3</sup> and contains more than 10<sup>23</sup> atoms!
- $10^{23} = 100,000,000,000,000,000,000$
- This is a scanning tunneling microscope image of graphite taken by Igor Fridman, a graduate student in U of T Physics
- The dots are individual carbon atoms
   [image from http://www.physics.utor



nan/1

- · Atomic structure is composed of:
  - An atomic **nucleus**, which contains nearly all the mass
  - Orbiting electrons
- The nucleus is composed of **protons** and **neutrons**, which are in turn made of smaller



- Protons have electric charge +1
- Electrons have electric charge -1
- All neutral atoms have the same number of protons as electrons

#### Atoms Check your neighbour

- The nucleus of an electrically neutral iron atom contains 26 protons. How many electrons are in this iron atom?
- A. 52
- B. 26
- C. 24
- D. 28
- E. zero

### The Elements



#### Atoms

· Refer to particles that make up a substance

#### Elemental substance

- Composed of only one kind of atom

   Lightest and most abundant is hydrogen.
- To date, about 115 are known.
  - 90 occur in nature.
  - Others produced in laboratory are unstable.
- Words *atom* and *element* can be used interchangeably.

#### Atoms Challenge Question: *Do you know it?*

The **atomic number** of an element matches the number of

- A. protons in the nucleus of an atom.
- B. electrons in a neutral atom.
- C. Both of the above.
- D. None of the above.

### Periodic Table of the Elements



## Compounds are made of Molecules

 Molecules are two or more atoms bonded together

Example:

• NH<sub>3</sub> (ammonia)

• 3 atoms of hydrogen and 1 atom of nitrogen



## **Crystal Structure**

- · Atoms in a solid are arranged in a regular array called a crystal.
- · If you shine an X-ray beam on a solid and it produces an X-ray diffraction pattern, this is evidence of the crystalline nature of the solid.
- Solids that do not have atoms arranged in a regular array are called amorphous solids.





## **Crystal Structure**

The following kinds of bonds can exist between atoms in a solid:

- Ionic
- · Covalent
- Metallic
- · Van der Waals-the weakest



ed Jan 11 2013 from http

The properties of a solid are dependent upon the kind of bonds that exists between the atoms.

## Density

· Amount of mass per unit volume of a material.

Density=<u>mass</u>



- Unit of density is kg/m<sup>3</sup> or g/cm<sup>3</sup>.
- · Example:

Density of water is 1000 kg/m<sup>3</sup>, or 1 g/cm<sup>3</sup>.

volume

#### Atoms Check your neighbour

If the volume of an object were to double, with no change in mass, what would happen to its density?

- A. It would remain unchanged.
- B. It would double.
- C. It would decrease by a factor of two.
- D. None of these.





ed Jan. 11, 2013 from http

- · A solid object subjected to external forces may undergo changes in shape and/or size.
- · A body's elasticity is a measure of how much it changes when a deforming force is exerted on it and how well it returns to its original shape.
  - Materials that do not return to their original shape are inelastic.

Imane retrieved Jan. 11 2013 from http://an

## Elasticity

Hooke's law: The extension of a spring is directly proportional to the force applied to it.



#### Elasticity CHECK YOUR NEIGHBOR

A 10-cm-long spring extends to 12 cm when a 1-kg load is suspended from it. What would be its length if a 3-kg load were suspended from it?

- A. 14 cm
- B. 16 cm
- C. 20 cm
- D. 24 cm

## Hooke's Law: Example 1

- Consider a spring that stretches an amount *d* when a load of mass *m* is suspended from it.
- How much will the spring stretch if two identical springs support the same single mass as shown?



# Hooke's Law: Example 2 Consider a spring that stretches an amount *d* when a load of mass *m* is suspended from it. How much will the spring stretch

 How much will the spring stretch if two identical springs support the same single mass as shown?



## **Tension and Compression**

When something is

- pulled it is in tension.
- squashed it is in compression.







**Tension and Compression** 

When girder is as shown, it is under

- tension on the lower side.
- compression on the upper side.



## **Tension and Compression**

Often construction uses an I-beam, i.e., a beam with a cross-section shaped as letter I.

When the beam is used as shown, the shape of the I-beam

- maximizes strength because the top (under tension) and bottom (under compression) have the most material.
- minimizes weight because the middle of the beam that is not under stress has the least material.





#### Tension and Compression CHECK YOUR NEIGHBOR

Suppose you drill a hole horizontally through a tree branch as shown. Where will the hole weaken the branch the least?

- A. Near the top
- B. Near the bottom
- C. Near the middle
- D. It does not matter.



### Arches

- Roofs of some older buildings needed many supporting columns.
- But with the discovery of arches, supporting columns were no longer needed.
  - Arches take advantage of the capacity of stone to withstand compression.
  - They use this ability of stone to increase the strength of the structure.





### Arches

- If the arch is supporting only its own weight, then the proper shape is a **catenary** (e.g., Arch of St. Louis).
- The catenary is also the natural shape of a chain that hangs between two points.
- An arch rotated around is a dome (e.g., Convocation Hall).





## Scaling

- Scaling is the study of how the volume and shape (size) of any object affect the relationship of its *strength, weight, and surface area.* 
  - Strength is related to the area of the cross section (which is two-dimensional and is measured in square centimeters).
  - Weight relates to volume (which is 3-dimensional and is measured in *cubic* centimeters).



## Scaling Example

- · A sculptor is making a statue of a duck.
- She first creates a model.
- To make the model requires exactly 2 kg of bronze.
- The final statue will be 5 times the size of the model in all three dimensions.
- · How much bronze will she require to cast the final statue?
- (You may find it helpful to think about the model being constructed of Lego blocks, with the final statue made of Lego blocks that are 5 times the size in each dimension as the ones used to make the model.)



#### Atoms <u>Chec</u>k your neighbour

When you scale up an object to 3 times its linear size, the surface area increases by

- A. 3 and the volume by 3.
- B. 3 and the volume by 9.
- C. 3 and the volume by 27.
- D. 9 and the volume by 27.
- E. 4 and the volume by 8.

#### So the surface area to volume ratio is

 $\frac{\text{Surface area}}{\text{Volume}} \sim \frac{\text{size}^2}{\text{size}^3} \sim \frac{1}{\text{size}}$ 

Strength to Weight Ratio decreases with increasing size.





Image is © Jri Bohdal http://www.neturephoto-c2.com/house-flv-photo-14134.html



### Scaling

- Air resistance is proportional to surface area.
- Force of gravity is proportional to mass, which is proportional to volume.
- So the ratio of air resistance to weight decreases as size increases.





CHECK YOUR NEIGHBOR If a 1-cm<sup>3</sup> cube is scaled up to a cube that is 10 cm

Scaling

long on each side, how does the surface area to volume ratio change?

- A. 1/100 of original
- B. 1/10 of original
- C. 10 times original
- D. 100 times original



### Before Class 9 on Wednesday

- Please read Chapter 13, or at least watch the 10-minute pre-class video for class 9
- or
- Something to think about:
- Where is the pressure greater, at the bottom of a large but shallow lake or a small but deep pond?

