COLLEGE PHYSICS

Chapter 3: Two-Dimensional Kinematics

Lesson 7

Video Narrated by Jason Harlow, Physics Department, University of Toronto

VECTORS

- A quantity having both a magnitude and a direction is called a vector
- The geometric representation of a vector is an arrow with the tail of the arrow placed at the point where the measurement is made

BUT FIRST ... REVIEW!RIGHT TRIANGLE TRIGONOMETRY

This is one of the most common things people are rusty with...

•
$$\sin(\theta) = \frac{\text{opp}}{\text{hyp}}$$

Opposite Opposite Opposite Adjacent

SOH CAH TOA

$$\cos(\theta) = \frac{\text{adj}}{\text{hyp}}$$

•
$$tan(\theta) = \frac{opp}{adj}$$

GIVE IT A TRY!

If the hypotenuse shown is 6m and the angle is 38°, what is the length of the adjacent side?

- A. $(6 \text{ m})\sin(38^{\circ})$
- B. (6 m)tan(38°)
- C. (6 m)cos(52°)
- D. (6 m)cos(38°)
- E. Not enough information

Adjacent

GIVE IT A TRY!

If the adjacent side below is 6 m and the opposite side is 4 m, what is the angle θ ?

- A. $tan^{-1}(6/4)$
- B. $\cos^{-1}(6/4)$
- $C. \cos^{-1}(4/6)$
- D. $tan^{-1}(4/6)$
- E. $\sin^{-1}(4/6)$

Adjacent

Walkers and drivers in a city like New York are rarely able to travel in straight lines to reach their destinations.

Instead, they must follow roads and sidewalks, making two-dimensional, zigzagged paths.

PROPERTIES OF VECTORS

- Suppose a pedestrian walks 9 blocks east, then turns left and walks 5 blocks north.
- In this city, every block is a 100 m x 100 m square

$$c = \sqrt{a^2 + b^2}$$

$$\theta = \tan^{-1}\left(\frac{b}{a}\right)$$

- The Pythagorean theorem relates the length of the legs of a right triangle, labeled a and b, with the hypotenuse, labeled c.
- The relationship is given by: $a^2 + b^2 = c^2$.
- The angle of c is given by: $\tan \theta = \frac{b}{a}$

VECTOR ADDITION GEOMETRIC METHOD 1: TIP-TO-TAIL

• To evaluate F = D + E, you could move E over and use the tip-to-tail rule

Tip-to-tail rule: Slide the tail of \vec{E} to the tip of \vec{D} .

VECTOR ADDITION GEOMETRIC METHOD 2: PARALLELOGRAM METHOD

• Alternatively, F = D + E can be found as the diagonal of the parallelogram defined by D and E

Parallelogram rule: Find the diagonal of the parallelogram formed by \vec{D} and \vec{E} .

ADDITION OF MORE THAN TWO VECTORS

The figure shows the path of a hiker moving from initial position 0 to position 1, then 2, 3, and finally arriving at position 4
 Net displacement

• The hiker's net displacement, an arrow from position 0 to 4, is: $\vec{D}_{\rm net} = \vec{D}_1 + \vec{D}_2 + \vec{D}_3 + \vec{D}_4$

Which figure shows the vector sum $A_1 + A_2 + A_3$?

MORE VECTOR MATHEMATICS

- The negative of a vector is just another vector of the same magnitude, but pointing in the opposite direction.
- $\mathbf{B} + (-\mathbf{B}) = \mathbf{0}$, the zero-vector

MULTIPLYING A VECTOR BY A SCALAR

The length of \vec{B} is "stretched" by the factor c. That is, B = cA.

$$\vec{A} = (A, \theta)$$

$$\vec{B} = c\vec{A} = (cA, \theta)$$

 \vec{B} points in the same direction as \vec{A} .

VECTOR SUBTRACTION

Vector subtraction: What is $\vec{A} - \vec{C}$? Write it as $\vec{A} + (-\vec{C})$ and add!

COMPONENT VECTORS

- The figure shows a vector A and an xycoordinate system that we've chosen
- We can define two new vectors parallel to the axes that we call the component vectors of A, such that:

$$\vec{A} = \vec{A}_x + \vec{A}_y$$

The y-component vector is parallel to the y-axis.

The x-component vector is parallel to the x-axis.

- We have broken A into two perpendicular vectors that are parallel to the coordinate axes
- This is called the **decomposition** of A into its component vectors

COMPONENTS

- We can describe each component vector with a single number called the component
- The component tells us how big the component vector is, and, with its sign, which ends of the axis the component vector points toward \vec{B}_{v} points in the

Switching between (magnitude, direction) notation and (*x*-component, *y*-component) notation:

The magnitude and direction of \vec{A} are found from the components. In this example,

The components of \vec{A} are found from the magnitude and direction. In this example, $A_x = A \cos \theta$ and $A_y = A \sin \theta$.

The angle is defined differently. In this example, the magnitude and direction are

Here the components are $B_x = B \sin \phi$ and $B_y = -B \cos \phi$. Minus signs must be inserted manually, depending on the vector's direction.

VECTOR ADDITION AND SUBTRACTION: ANALYTICAL METHOD

- We can perform vector addition by adding the x- and ycomponents separately
- For example, if D = A + B + C, then:

$$D_x = A_x + B_x + C_x$$

$$D_{y} = A_{y} + B_{y} + C_{y}$$

• Similarly, to find R = P - Q we would compute:

$$R_x = P_x - Q_x$$

$$R_{\rm v} = P_{\rm v} - Q_{\rm v}$$

• To find T = cS, where c is a scalar, we would compute:

$$T_x = cS_x$$

$$T_{y} = cS_{y}$$

В.

GIVE IT A TRY!

The sum $\vec{F}_1 + \vec{F}_2 + \vec{F}_3$ points to the left.

Two of three forces are shown. Which is the missing third force?

Two of the three forces exerted on an object

A.

C.

TILTED AXES AND ARBITRARY DIRECTIONS

- For some problems it is convenient to tilt the axes of the coordinate system
- The axes are still perpendicular to each other, but there is no requirement that the *x*-axis has to be horizontal

