### PHY385-H1F Introductory Optics

Class 2 - Outline: Ch.2

- One dimensional wave function  $\psi(x,t) = f(x vt)$
- The differential wave equation:  $\frac{\partial^2 \psi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$
- · Harmonic Waves
- Phasors
- Plane waves
- · 3-D Wave equation
- · Spherical waves
- · Cylindrical Waves (if time)



Both the classical and quantum-mechanical treatments of light make use of the mathematical description of waves.

#### In-Class Vote

• Consider the function:

$$\psi(x,t) = f(x - vt)$$

• Where v = 300 m/s, and:  $f(y) = \frac{1}{y^2 + 1}$ 

Consider the time t = 0. At what value of x is  $\psi(x,0)$  a *minimum*? 1. 0

- 2. -∞
- 3. +∞
- 4. Both  $-\infty$  and  $+\infty$

#### In-Class Vote

• Consider the function:

$$\psi(x,t) = f(x-vt)$$
  
Where v = 300 m/s, and:  $f(y) = \frac{1}{v^2+1}$ 

Consider the time t = 0. At what value of x is  $\psi(x,0)$  a *maximum*? 1. 0

- 2. -∞
- 3. +∞
- 4. Both  $-\infty$  and  $+\infty$

#### In-Class Vote

• Consider the function:

$$\psi(x,t) = f(x-vt)$$

• Where v = 300 m/s, and:  $f(y) = \frac{1}{v^2 + 1}$ 

Consider the time t = 1 s. At what value of x is  $\psi(x, 1)$  a *minimum*?

- 2. -∞
- 3. +∞
- 4. Both  $-\infty$  and  $+\infty$
- 5. 300 m

#### In-Class Vote

• Consider the function:

$$\psi(x,t) = f(x - vt)$$

• Where 
$$v = 300 \text{ m/s}$$
, and:  $f(y) = \frac{1}{y^2 + 1}$ 

Consider the time t = 1 s. At what value of x is  $\psi(x, 1)$  a *maximum*?

- 1. 0
- 2. +300 m3. -300 m
- 4. Both  $-\infty$  and  $+\infty$

## Some math identities

| Cartesian<br>Laplacian:   | $\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}.$                                                                                                                                                                                      |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cylindrical<br>Laplacian: | $\Delta f = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left( \rho \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2}.$                                                                                               |
| Spherical<br>Laplacian:   | $\Delta f = \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \varphi} \frac{\partial}{\partial \varphi} \left( \sin \varphi \frac{\partial f}{\partial \varphi} \right) + \frac{1}{r^2 \sin^2 \varphi} \frac{\partial^2 f}{\partial \theta^2}$ |
| Curl of the<br>curl:      | $ abla 	imes ( abla 	imes {f A}) =  abla ( abla \cdot {f A}) -  abla^2 {f A}$                                                                                                                                                                                                                                |

# What is a "phasor"?

- 1. The initial phase of a sinusoidal wave at the origin.
- 2. A vector in the complex plane, the real part of which is the amplitude of a sinusoidal wave.
- 3. The argument of the cosine or sine function used to represent a wave.
- 4. A weapon used on Star Trek.

