PHY385-H1F Introductory Optics Class 8 – Outline: Finishing Chapter 4

- Finishing Fresnel Equations
- Total Internal Reflection
- Evanescent Waves
- Colour: Additive and Subtractive Primaries

Reflection Coefficient - TE Mode - External

Fresnel's Equations

Fresnel's Equations

Fresnel's Equations

Fresnel's Equations

Fresnel's Equations

Fresnel's Equations

Fresnel's Equations

Reflection Coefficient, Internal Reflection

Reflection Coefficient, External Reflection

Brewster's Angle Incident ray Reflected ray • $\theta_r + \theta_r + 90^\circ = 180^\circ$ (unpolarised) (polarised) • $\theta_t = 90^\circ - \theta_r = 90^\circ - \theta_i$ • $n_1 \sin \theta_i = n_2 \sin \theta_t = n_2 \cos \theta_i$ • $\tan \theta_i = n_2/n_1$ • This particular angle of incidence is called the Brewster's angle. Refracted ray (slightly polarised) $\theta_p = \tan^{-1} \left(\frac{n_2}{n_1} \right)$

Two Special Angles at n_1/n_2 boundary!

Total Internal Reflection occurs when $\theta_i > \theta_c$

and Subtractive Primary Colours (ink)

Discussion Question

- Why is this square red?
- 1. The light bulbs in the projector emit light with wavelengths in the "B" range (~450 nm)
- 2. The light bulbs in the projector emit light with wavelengths in the "G" range (~520 nm)
- 3. The light bulbs in the projector emit light with wavelengths in the "R" range (~600 nm)
- 4. Both 1 and 2

Discussion Question

- Why is Harlow's shirt red?
- 1. The pigments in the cloth absorb light with wavelengths in the "B" range (~450 nm)
- 2. The pigments in the cloth absorb light with wavelengths in the "G" range (~520 nm)
- 3. The pigments in the cloth absorb light with wavelengths in the "R" range (~600 nm)
- 4. Both 1 and 2

Frustrated Total Internal Reflection

Additive Primary Colours (light bulbs)

Discussion Question

- What if the pigments Harlow's shirt only absorbed light with wavelengths in the "R" range (~600 nm)?
- 1. It would be red.
- 2. It would be cyan.
- 3. It would be yellow.
- 4. It would be magenta.

Discussion Question

- What if the pigments Harlow's shirt only absorbed light with wavelengths in the "G" range (~520 nm)?
- 1. It would be red.
- 2. It would be cyan.
- 3. It would be yellow.
- 4. It would be magenta.

Discussion Question

- What if the pigments Harlow's shirt only absorbed light with wavelengths in the "B" range (~450 nm)?
- 1. It would be red.
- 2. It would be cyan.
- 3. It would be yellow.
- 4. It would be magenta.

Term Test 1

- Test 1 on Tuesday will cover all of Chapters 2, 3 and 4, including some stuff I did *not* cover thoroughly during lecture
- Exceptions: Section 3.7 and 4.10, 4.11, the last sections of chapters 3 and 4, will *not* be covered in this course
- There will be some conceptual multiple choice questions, plus some problems for which you must show your work.

Term Test 1

- Test 1 will be held IN HERE: MP134
- Tuesday Oct. 9, 1:10 to 2:00pm (50 minutes)
- Please try to be here early and we can all begin exactly at 1:10
- AIDS ALLOWED: A calculator and one 8.5"x11" piece of note paper, double-sided, prepared by you