PHY385-H1F Introductory Optics

Class 8 - Outline: Finishing Chapter 4

- Finishing Fresnel Equations
- Total Internal Reflection
- Evanescent Waves

- Colour: Additive and Subtractive Primaries

Fresnel's Equations

Reflectance - TE Mode - External

Fresnel's Equations

Reflectance - TM Mode - External

Fresnel's Equations

Fresnel's Equations

Fresnel's Equations

Fresnel's Equations

Reflection Coefficient, External Reflection

Brewster's Angle

- Sir David Brewster invented the kaleidoscope in 1815
- He discovered the polarization angle empirically.
- Consider light incident on a boundary $n_{1} \rightarrow n_{2}$ at angle θ_{i}.
- If the reflected and transmitted beams are orthogonal, then only the component polarized parallel to the surface will be reflected.

Brewster's Angle

- $\theta_{t}+\theta_{r}+90^{\circ}=180^{\circ}$
- $\theta_{t}=90^{\circ}-\theta_{r}=90^{\circ}-\theta_{i}$
- $n_{1} \sin \theta_{i}=n_{2} \sin \theta_{t}=n_{2} \cos \theta_{i}$
- $\tan \theta_{i}=n_{2} / n_{1}$
- This particular angle of incidence is called the Brewster's angle.

Frustrated Total Internal Reflection

Two Special Angles at $\mathrm{n}_{1} / \mathrm{n}_{2}$ boundary!

$\theta_{p}=\tan ^{-1}\left(\frac{n_{2}}{n_{1}}\right)$
Linear Polarization by Reflection is maximum when $\theta_{i}=\theta_{p}$
$\theta_{c}=\sin ^{-1}\left(\frac{n_{2}}{n_{1}}\right)$

Total Internal Reflection
occurs when $\theta_{i}>\theta_{c}$

Additive Primary Colours (light bulbs) and Subtractive Primary Colours (ink)

- Why is Harlow's shirt red?

1. The pigments in the cloth absorb light with wavelengths in the " B " range ($\sim 450 \mathrm{~nm}$)
2. The pigments in the cloth absorb light with wavelengths in the " G " range ($\sim 520 \mathrm{~nm}$)
3. The pigments in the cloth absorb light with wavelengths in the " R " range ($\sim 600 \mathrm{~nm}$)
4. Both 1 and 2

Discussion Question

Discussion Question

- What if the pigments Harlow's shirt only absorbed light with wavelengths in the " R " range ($\sim 600 \mathrm{~nm}$)?

1. It would be red.
2. It would be cyan.
3. It would be yellow.
4. It would be magenta.

- What if the pigments Harlow's shirt only absorbed light with wavelengths in the " G " range ($\sim 520 \mathrm{~nm}$)?

1. It would be red.
2. It would be cyan.
3. It would be yellow.
4. It would be magenta.

Discussion Question

- What if the pigments Harlow's shirt only absorbed light with wavelengths in the " B " range ($\sim 450 \mathrm{~nm}$)?

1. It would be red.
2. It would be cyan.
3. It would be yellow.
4. It would be magenta.

Term Test 1

- Test 1 on Tuesday will cover all of Chapters 2, 3 and 4 , including some stuff I did not cover thoroughly during lecture
- Exceptions: Section 3.7 and 4.10, 4.11, the last sections of chapters 3 and 4, will not be covered in this course
- There will be some conceptual multiple choice questions, plus some problems for which you must show your work.

Term Test 1

- Test 1 will be held IN HERE: MP134
- Tuesday Oct. 9, 1:10 to 2:00pm (50 minutes)
- Please try to be here early and we can all begin exactly at 1:10
- AIDS ALLOWED: A calculator and one 8.5"x11" piece of note paper, double-sided, prepared by you

