PHY385-H1F Introductory Optics

Class 9 - Outline: Sections 5.1, 5.2

- Geometrical Optics Introduction
- Refraction at a Curved Surface
- Thin Lens Equation
- Focal Point

Image Formation by a Converging Lens

- Focal Plane
- Images
- Magnification
- Lenses in Combination

How an image is formed

Discussion Question...

Two plane mirrors form a right angle. How many images of the ball can you see in the mirrors?

Discussion Question...

A fish swims directly below the surface of the water. An observer sees the fish at:

1. a greater depth than it really is.
2. its true depth.
3. a smaller depth than it really is.

A fish swims below the surface of the water. An observer sees the fish at:

1. a greater depth than it really is.
2. its true depth.
3. a smaller depth than it really is.

Image Formation from a Plane Surface
A fish in the aquarium
The eye sees the

Diverging rays appear to
come from this point.
This is a virtual image.

Image formation at a spherical interface

$$
\frac{n_{1}}{s_{o}}+\frac{n_{2}}{s_{i}}=\frac{n_{2}-n_{1}}{R}
$$

R is positive means surface is convex toward the object R is negative means surface is concave toward object s_{o} is positive means object is to the left of interface s_{i} is positive means image is real, to the right of interface

Converging Lens

NOTE: Focal length is defined for initially parallel rays.

Lensmaker's Formula

Diverging Lens

Discussion Question.

What will happen to the rays emerging to the right of the lens if the face is moved a little further away from the lens?

1. They will remain parallel.
2. They will diverge (spread out).
3. They will converge (toward a focus).

The Thin Lens Equation: $\frac{1}{s_{o}}+\frac{1}{s_{i}}=\frac{1}{f}$
f is positive for a converging lens
f is negative for a diverging lens
s_{o} is positive means object is real, to the left of lens
s_{i} is positive means image is real, to the right of lens
s_{i} is negative means image is virtual, to the left of lens

Ray Tracing
With a converging thin lens

Any ray passing through the near focal point emerges from the lens parallel to the optical axis.

Ray Tracing
With a diverging thin lens

Any ray initially parallel to the optical axis will refract through the focal point on the far side of the lens.

Any ray directed at the center of the lens passes through in a straight line.

Thin Lens Combinations

