PHY385-H1F Introductory Optics
Class 19 - Outline: 9.1 to 9.3

- Jones Matrices
- Two-slit interference
- Young's 2-slit Experiment
- Temporal and Spatial Coherence
- Fresnel-Arago Laws
- Other wavefront splitting à y) interfometers

Notes from Table 8.5 on pg. 375:

- \mathscr{P} - state at $-45^{\circ} \frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -1\end{array}\right]$
- \mathscr{R} - state $\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -i\end{array}\right]$
- \mathscr{C} - state $\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ i\end{array}\right]$

Notes from Table 8.6 on pg. 378:

- Linear Polarizer at $-45^{\circ} \frac{1}{2}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$
- QWP, fast axis along y
- QWP, fast axis along $x \quad e^{i \pi / 4}\left[\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right]$

Horizontally polarized light with Jones Vector EO $=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ first passes through a linear polarizer at $45^{\circ}, \mathrm{M} 1$, then through a vertical polarizer M2.

$$
M 1=\left[\begin{array}{ll}
0.5 & 0.5 \\
0.5 & 0.5
\end{array}\right] \quad M 2=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

After passing through M1, the unnormalized Jones vector of the light is

1. $\left[\begin{array}{l}0 \\ 0\end{array}\right]$
2. $\left[\begin{array}{c}0 \\ 0.5\end{array}\right]$
3. $\left[\begin{array}{c}0.5 \\ 0 .\end{array}\right]$
4. $\left[\begin{array}{l}0.5 \\ 0.5\end{array}\right]$

Horizontally polarized light with Jones Vector EO $=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ first passes through a linear polarizer at $45^{\circ}, \mathrm{M} 1$, then through a vertical polarizer M2.

$$
M 1=\left[\begin{array}{ll}
0.5 & 0.5 \\
0.5 & 0.5
\end{array}\right] \quad M 2=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

What is the correct Jones Matrix for the system?

1. $\left[\begin{array}{ll}0 & 0.5 \\ 0 & 0.5\end{array}\right]$
2. $\left[\begin{array}{cc}0 & 0 \\ 0.5 & 0.5\end{array}\right]$
3. $\left[\begin{array}{ll}0.5 & 0 \\ 0.5 & 0\end{array}\right]$
4. $\left[\begin{array}{cc}0.5 & 0.5 \\ 0 & 0\end{array}\right]$

Horizontally polarized light with Jones Vector EO $=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ first passes through a linear polarizer at $45^{\circ}, \mathrm{M} 1$, then through a vertical polarizer M2.

$$
M 1=\left[\begin{array}{ll}
0.5 & 0.5 \\
0.5 & 0.5
\end{array}\right] \quad M 2=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

If M1 is removed and the light E0 passes only through M 2 , the Jones vector of the resulting light is

1. $\left[\begin{array}{l}0 \\ 0\end{array}\right]$
2. $\left[\begin{array}{c}0 \\ 0.5\end{array}\right]$
3. $\left[\begin{array}{c}0.5 \\ 0 .\end{array}\right]$
4. $\left[\begin{array}{l}0.5 \\ 0.5\end{array}\right]$

Horizontally polarized light with Jones Vector EO $=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ first passes through a linear polarizer at $45^{\circ}, \mathrm{M} 1$, then through a vertical polarizer M2. The system matrix is

$$
M 2 \times M 1=\left[\begin{array}{cc}
0 & 0 \\
0.5 & 0.5
\end{array}\right]
$$

After passing through the system, the unnormalized Jones vector of the light is

1. $\left[\begin{array}{l}0 \\ 0\end{array}\right]$
2. $\left[\begin{array}{c}0 \\ 0.5\end{array}\right]$
3. $\left[\begin{array}{c}0.5 \\ 0\end{array}\right]$
4. $\left[\begin{array}{l}0.5 \\ 0.5\end{array}\right]$

Interference

Chapter 9, Sections 9.1 to 9.3

Two monochromatic beams of light, each of irradiance I_{0}, pass through the same small window of area A. The maximum possible irradiance passing through this window at any moment is

1. 0
2. I_{0}
3. $2 I_{0}$
4. $4 I_{0}$

Two flashlight beams, each of irradiance I_{0}, pass through the same small window of area A. The total irradiance passing through this window at any moment is

1. 0
2. I_{0}
3. $2 I_{0}$
4. $4 I_{0}$

Two monochromatic beams of light, each of irradiance I_{0}, pass through the same small window of area A. The minimum possible irradiance passing through this window at any moment is

1. 0
2. I_{0}
3. $2 I_{0}$
4. $4 I_{0}$

Two types of "coherence"

Temporal Coherence
Random fluctuations in the spacing of the wavefronts

Spatial Coherence
Random fluctuations in the shape of the wavefronts

Source: http://skullsinthestars.com/2008/09/03/optics-basics-coherence/

A Michelson interferometer

- When d exceeds a critical value, D, the fringes disappear
- $D=$ "Coherence Length" for this particular kind of light
- D corresponds to a
"Coherence time"
- $T=D / c$
- Coherence times are about $10-15 \mathrm{~ns}$ for typical lasers (about 5 m)

temporal coherence: random fluctuations in the spacing of the wavefronts

spatial coherence: random fluctuations in the shape of the wavefronts
- Very monochromatic sources tend to have longer values of coherence time. These are "temporally coherent".
- Light from point-sources tends to have larger values of coherence area. These are "spatially coherent". The larger the angular size of the source, the less spatially coherent it will be.

