

PHY131H1 F LEC0101 20209:Intr...

PHY131H1 F LEC0101 2020 Fall

Ş

Class 1

- Welcome to my first zoom lecture!
- My name is Jason Harlow
- The video of this lecture is available at https://youtu.be/7XXE8UdRoAw

Note from Professor Sealfon (a.k.a. "Professor Maple"), the Practicals Coordinator for this course:

- Practicals will start on Friday, Sept. 18; there are *no Practicals* Sept. 10-17.
- Please plan to meet online synchronously for both hours of your first Practical section.

PHY131H1F: "Introduction to Physics I" Today's Outline

- **1. Introductions** who am I, who are you, what is the Physics Department at U of T?
- 2. Syllabus: How this course will work
- 3. Demonstration: rolling balls
- 4. Course content: Chapter 1, pgs. 1-5

Who am I?

- Jason J.B. Harlow
- Associate Professor, Teaching Stream
- Department of Physics, University of Toronto St. George Campus (since 2004)
- Ph.D. Astronomy and Astrophysics, Pennsylvania State University, 2000
- B.Sc. Physics and Astronomy, University of Toronto, 1993
- I discovered a star as an undergraduate this is what got me into grad school!
 Give 372 has a spectral class of M2.0 V and was recently found to be a single lined spectroscopic binary system with an orbital period of 47.7 days and an eccentricity of e = 0.530 (Upgren & Harlow 1996, PASP, system with an orbital period of 47.7 days and an eccentricity of e = 0.530 (Upgren & Harlow 1996, PASP, this is what got me into grad school!

The "Get to Know You Survey"

- Thanks for doing this on Quercus – 595 of you got the 1 "homework credit" for doing this!
- You were asked to drop two fruits: a heavier one, like a grapefruit, and a lighter one, like a grape.
- You were asked: Which fruit hits the floor first?

- the heavier fruit
- the lighter fruit
- they hit the floor at the same time (or it's hard to tell)

The "Get to Know You Survey"

- 20% went to high school in Toronto
- 33% went to high school in Ontario, outside Toronto
- 15% Canada outside Ontario (Savana is from Yukon Territory!)
- 11% went to high school in China
- 6% went to high school in the USA
- Minglang, William and Shiyao are from Victoria, BC, which is where I went to high school!
- Khairatun and Ishmam both went to the same high school in Chittagong, Bangladesh
- Antoinette, Eugene, Rachel and Anindita all went to Western Canada High School in Calgary

Where am I?

- McLennan Physical Laboratories (MP)
- 60 Saint George Street
- Room: MP127
- My office is in the same building: MP129E

Where am I?

MP: 60 Saint George Street

- What is physics?
- A. The branch of philosophy that treats first principles, including ontology and cosmology.
- B. The science of nature and properties of matter and energy, including mechanics, heat, light and other radiation, sound, electricity, magnetism, and the structure of atoms.
- C. The systematic knowledge of the physical or material world gained through observation and experimentation.
- D. The science that deals with the composition and properties of substances and various elementary forms of matter.

- What is physics?
- A. The branch of philosophy that treats first principles, including ontology and cosmology. [Metaphysics]
- B. The science of nature and properties of matter and energy, including mechanics, heat, light and other radiation, sound, electricity, magnetism, and the structure of atoms.
- C. The systematic knowledge of the physical or material world gained through observation and experimentation.[Science]
- D. The science that deals with the composition and properties of substances and various elementary forms of matter. [Chemistry]

The Large Hadron Collider

[image from http://www.universetoday.com/17905/large-hadron-collider-worst-case-scenario/]

Achieved 13 TeV collisions in June, 2015.

[Photo courtesy of http://erinjanus.com/the-time-machine-the-most-complicated-thing-created-by-humans/]

[http://en.wikipedia.org/wiki/Higgs_boson]

Atmospheric Physics Research at U of T

General Relativity: The Theory of Gravity

On Feb.11, 2016, the first detection of gravitational waves was announced.

Two solar mass black holes merged 1.3 billion light-years away, and sent ripples through the fabric of space itself.

Biological Physics Research at U of T

How do simple creatures like *C. elegans* make decisions?

What is the physics behind RNA folding, molecular motors and DNA replication?

http://www.physics.utoronto.ca/

- 55 Researching Faculty
- 6 Teaching Faculty
- 2 Librarians
- 20 Technologists and Information Technology Specialists
- 20 Administrators

- q.utoronto.ca (a.k.a. "Quercus") is the course web-page where everything you need to know is posted.
- PHY131 is an online course intended to give you an introduction to how physicists think, and how we approach problems.
- Physics is one of the oldest sciences, and in some ways it is the most simple.
- Physicists start with a big, messy problem and we first simplify it as much as they possibly can. Only then do we try to analyze the situation.

- By the end of this course you will be able to use basic concepts from physics to explain and predict simple situations.
- You will also be able to incorporate physics concepts in order to explain and predict what will happen to messy problems which approximate real life situations.
- You will be able to design experiments for observing physical phenomena. You will be able to propose explanations (hypotheses), and then design and implement testing experiments to test your explanations.

Required Course Materials:

- "College Physics: Explore and Apply", by Etkina, Planinsic, and Van Heuvelen, 2nd Edition, ©2019 by Pearson Education, Inc.
- MasteringPhysics Online Licence (which comes with the textbook when you purchase it through the U of T Bookstore)

Marking Scheme:

• Practicals:

20%

- Asynchronous Homework Assigned on Quercus: x%, where $0 \le x \le 20$ depends on earned online homework credits throughout the semester
- Midterm Assessments (best 4 out of 5):
- Final Assessment:

$$(50 - (x/2))\%$$

 $(30 - (x/2))\%$

Midterm and Final Assessments: All students must make

themselves available for Synchronous Midterm Assessments,

on Toronto Time (EDT), five Tuesday evenings.

- Tue. Sep. 29, 8:10-8:40pm
- Tue. Oct. 13, 8:10-8:40pm
- Tue. Oct. 27, 8:10-8:40pm
- Tue. Nov. 17, 8:10-8:40pm
- Tue. Dec. 1, 8:10-8:40pm

There will also be a synchronous final assessment at a time to

be announced during:

• Dec.11-22, 2020

Midterm and Final Assessments

- These are challenging online quizzes which will be offered on Quercus for a short duration.
- These quizzes are "open book" you may use the textbook, course lecture notes, google-searches, etc, as resources.
- You must work on these quizzes *individually*. You may not receive realtime help from any other person, and you may not participate in any form of real-time discussions with others about the quiz while you are completing it.
- The format of the quiz will be a series of multiple-choice and short-answer questions delivered on Quercus using the Quiz function.
- Questions will be delivered to each student in a random order, and the questions must be done one at a time.
- Once you submit a question, you will see the next question; you will not have the ability to change any answer after it has been submitted.

- What kind of device are you zooming on right now?
 - A. PC computer
 - B. Mac computer
 - C. Tablet / iPad
 - D. Phone
 - E. Other

Device I recommend

- Starting next week, I recommend you use a **computer** (PC or Mac) with a good internet connection.
- This is preferable for MWF11 classes, as we may be opening up a second window outside of zoom for breakout discussions – not possible on a single phone.
- This will be *required* for Practicals, during which you will be presenting to your peers in small groups (starting Sep.18).
- In Practicals you will need a working microphone, a camera, and a quiet space free from other noise but where you feel comfortable speaking.

Zoom

App

How To Zoom....

- We are running zoom in "webinar" mode.
 - You are currently muted and your video is off I cannot hear or see any of you, but I can see a list of your names – you are "Attendees", I am a "Panelist".
 - There are a few ways you can interact with me during these classes.
 - But first, a warning: There are 993 students enrolled in this course, and only one lecturing professor (me) – so I may not be able to truly react to you if you try these.
 - But it never hurts to try I welcome any feedback you send me!

- Zoom
 - Арр

- How to try to get my attention:
- 1. Click **Raise Hand**. If I see a raised hand, I assume that means you would like me to unmute your microphone to ask a question. Once I have heard your question, I'll mute you again. Please don't forget to **Lower Hand** if you don't want to talk again.

- JH
 Jason Harlow
 02:43 PM

 Huh?
 Huh?

 OI
 Anonymous Attendee
 02:43 PM

 You suck prof!!!
 You suck prof!!!

- Type in the Q&A this can be done with your zoom name, or you can click "Send anonymously", and I won't know who you are!!
- 3. Type in the "Chat" this is set to go only to "All Panelists", which means me. Only I will see what you chat, so it's really no better than Q&A.

Demonstration

- Here is a real-life problem I considered just this morning.
- I am riding my bike along a road, which *splits*.
- One path goes straight ahead (A).
- The other goes down and up (B).
- If I do not peddle, and there is very little friction, which path gets me to the other side in the least time

Two balls are launched along a pair of tracks with equal velocities, as shown. Both balls reach the end of the track. *Predict*: Which ball will reach the end of the track first?

- A
- B
- C: They will reach the end of the track at the same time

Demo: Two balls were launched along a pair of tracks with equal velocities. Both balls reached the end of the track. *Observe*: Which ball reached the end of the track first?

- A
- B
- C: They reached the end of the track at the same time

Demo: Two balls were launched along a pair of tracks with equal velocities. Both balls reached the end of the track. *Observe*: Which ball reached the end of the track first?

end of the track first?

- A
 B always wins. This does not depend on the exact shape of the track.
 - C: They reached the end of the track at the same time

Explanation: *Why* does ball B reach the end of the track first?

- A. Ball B is always traveling faster than ball A, so it reaches the end of the track first.
- B. Balls A and B start and end with the same speed. But while ball B is on the lower part, it is going faster than ball A because gravity has sped it up. Its *average* speed is greater, so it gets there first.
- C. Ball B travels a shorter distance than ball A.
- D. Ball B travels a longer distance, but is pulled faster by an extra force we cannot know about.
- E. The observation is flawed ball B should not reach the end first.

Explanation: *Why* does ball B reach the end of the track first?

- A. Ball B is always traveling faster than ball A, so it reaches the end of the track first.
- Balls A and B start and end with the same speed. But while ball B is on the lower part, it is going faster than ball A because gravity has sped it up. Its *average* speed is greater, so it gets there first.
- C. Ball B travels a shorter distance than ball A.
- D. Ball B travels a longer distance, but is pulled faster by an extra force we cannot know about.
- E. The observation is flawed ball B should not reach the end first.

- Have you registered for a weekly 2-hour Practical (PRA) section yet?
- A. Yes, and I'm looking forward to it!
- B. Yes, but I am hoping to change the time of my Practical.
- C. No, not yet!

MyLab and Mastering

Practicals

Grades

Modules

Library Resources

Piazza

PRA Change/Registration Form

PHY131H1 F LEC0101 > Announcements > PRA Change/Registration Form

PRA Change/Registration Form April Seeley

All Sections

The link on the left hand side called PRA Change/Registration form is to be used only if you need to change your practical section permanently from the one you enrolled in on ACORN or if you do not have a practical section chosen yet on ACORN. Do not use if you are happy in the practical section you are in.

PRACTICALS

- Practicals will start on Friday, Sept. 18; there are (were) no Practicals Sept. 10-17.
- Please plan to meet online synchronously for both hours of your first Practical section.
- You will meet for once per week in zoom or Microsoft Teams room with a maximum of about 18 students
- You will have a Teaching Assistant (TA) who will be there to help you all semester. They will be a graduate student, currently working on a Masters or Ph.D. in physics.
- You will work on activities in teams of 3 or 4.

How to get more information

• The main way of keeping up with what's going on in the course is the web-site at:

https://q.utoronto.ca

- The Syllabus on the portal page for this course has all the rules for the course – PLEASE READ IT!
- Also, we will email you from time to time at your @mail.utoronto.ca email address
 - Monday's reading assignment is Chapter 1 of Etkina, plus Chapter 2, Section 2.1 What is motion? And Section 2.2 Representing Motion with Diagrams.
 - Until 12:30 I will be in my gather.town "office hour" you can find the link on the Announcement from yesterday on the course page.
 - Have a great weekend!!

Sep.11 2020 Gather. Town whiteboard notes

Q: Why does a ball speed up as it rolls down the hill?

Sep.11 2020 Gather. Town whiteboard notes

Q: Why does ball B *always* win, no matter what the shape of the bottom track?

