PHY131 F Fall 2020

Class 3

- 2.3 Vector Math (not the same as regular math!)
- 2.4 Position, Displacement, Distance and Path Length
- 2.6 Motion with Constant Velocity
- 2.7 Motion with Constant

Acceleration

Learning Assistant Alliance Email

- You should have received an email by now from the Learning Assistance Alliance.
- They will be administering the Pre and Post diagnostic tests for this course, which you do online.
- This first test (FCI) is about physics, and the second (CLASS) is about your attitudes about science in general.
- These help us get to know you and also help us understand how much you will gain from this semester, especially in the new fully-online format.

Learning Assistant Alliance Email

- Both tests are optional, and your accuracy on the tests will not affect your mark in the course in any way.
- The deadline for the pre-course tests is this Friday.
- To encourage you to do the tests, you will receive 1 homework credit for doing each of the pretests, and 1 homework credit for doing each of the post-tests at the end of the semester, for a total possible of 4 homework credits.
- You get the credit for participation in the surveys; accuracy does not matter, but I encourage you to do your best.

Video Tour of Physics Building

- Just for fun, I walked around the building today and took a 7 minute video with my iPhone.
- It is totally optional, and not course-related, but will give you an idea of where I am.
- There's a link on the same page where you find the notes and recordings of classes
- https://youtu.be/ubJ2f3Q7I6s

Last day I asked at the end of class:

- Does constant velocity imply constant acceleration?
- ANSWER: YES, and even more, it implies zero acceleration! (zero is a constant!)
- Does constant acceleration imply constant velocity?
- ANSWER: NO! Unless that constant happens to be zero! Constant acceleration normally means constantly changing velocity!

Vectors

- A quantity that is fully described by a single number is called a scalar quantity (i.e., mass, temperature, volume).
- A quantity having both a magnitude and a direction is called a vector quantity.
- The geometric representation of a vector is an arrow with the tail of the arrow placed at the point where the measurement is made.
Magnitude

of vector | Direction |
| :--- |
| of vector |

- We label vectors by drawing a small arrow over the letter that represents the vector, i.e.,: \vec{r} for position, \vec{v} for velocity, \vec{a} for acceleration.

Poll Question

Which of the vectors in the second row shows $\vec{A}+\vec{B}$?

Poll Question

Which of the vectors in the second row shows $\vec{A}+\vec{B}$?

A.

E.
\vec{v}
velocity
v
speed

2.2 A Conceptual Description of Motion

- To use a motion diagram, you would like to know where the object is and when the object was at that position.
- Position measurements can be made by laying a coordinate-system grid over a motion diagram.
- To illustrate, the figure shows a sled sliding down a snow-covered hill.
- (b) shows a motion diagram for the sled, over which we've drawn an $x y$-coordinate system.

2.2 A Conceptual Description of Motion

- We said that motion is the change in an object's position with time, but how do we show a change of position?
- Shown is the motion diagram of a sled sliding down a snow-covered hill.
- To show how the sled's position changes between $t_{3}=3 \mathrm{~s}$ and $t_{4}=4 \mathrm{~s}$, we draw a vector arrow between the two dots of the motion diagram.
- This vector is the sled's displacement, which is given the symbol $\Delta \vec{r}$

$$
\begin{aligned}
& \Delta \vec{r}=\vec{r}_{4}-\vec{r}_{3} \\
& \vec{r}_{4}=\vec{r}_{3}+\Delta \vec{r}
\end{aligned}
$$

(a)

Alternatively, the position can be specified by the position vector.

The sled's displacement between
$t_{3}=3 \mathrm{~s}$ and $t_{4}=4 \mathrm{~s}$ is the vector drawn from one postion to the next.

Multiplication by a negative scalar

When a vector is multiplied by a scalar, the result is a vector parallel or antiparallel to the original vector whose magnitude equals the product of the magnitude of the original vector and the magnitude of the scalar.

Poll Question

Which of the vectors in the second row shows $2 \vec{A}-\vec{B}$?

Poll Question

Which of the vectors in the second row shows $2 \vec{A}-\vec{B}$?

$2 \vec{A}+(-\vec{B})$
$+$
8
E.
D.

1971

Is physics scary?

Julius Sumner Miller (1909-1987)

2.4 Quantities for Describing Motion

Time and time interval

- The time t is a clock reading.
- The time interval $\left(t_{2}-t_{1}\right)$ or Δt is a difference in clock readings. (The symbol Δ (delta) represents "change in" and is the final value minus the initial value.)
- These are both scalar quantities.
- The SI units for both quantities are seconds (s).

A stopwatch is used to measure a time interval.

2.4 Quantities for Describing Motion

Position, displacement, distance, and path length

- These quantities describe the location and motion of an object.
- Position is an object's location with respect to a particular coordinate system.
- Displacement is a vector that starts from an object's initial position and ends at its final position.
- Distance is the magnitude (length) of the displacement vector.
- Path length is how far the object moved as it traveled from its initial position to its final position.
Imagine laying a string along the path the object took. The length of the string is the path length.

Example: A car backs up (moving in the negative direction) toward the origin of the coordinate system at $x=0$. The car stops and then moves in the positive x-direction to its final position x_{f}.

Positions: x_{i} and x_{f}

17

Example: A car backs up (moving in the negative direction) toward the origin of the coordinate system at $x=0$. The car stops and then moves in the positive x-direction to its final position x_{F}.

Displacement: \vec{d} and distance: d

Example: A car backs up (moving in the negative direction) toward the origin of the coordinate system at $x=0$. The car stops and then moves in the positive x-direction to its final position x_{f}.

Path length: l

2.6 Constant Velocity Linear Motion

Velocity: Slope of the position-versus-time graph

$$
\begin{equation*}
v_{x}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}=\frac{\Delta x}{\Delta t} \tag{2.1}
\end{equation*}
$$

- If the slope is positive, the object is moving along the $+x$ axis.
- If the slope is negative, the object is moving along the $-x$ axis.
- The magnitude of the slope (which is always positive) is the speed of the object.
- The speed and the direction together are called the velocity of the object.

Uniform Motion = Constant Velocity

In the absence of friction, all objects $x \quad x=x_{0}+v t$ tend to move with constant velocity. [m] This is "Newton's First Law of Motion."

$$
v_{\text {avg }}=\text { slope }=\frac{\text { rise }}{\text { run }}=\frac{\Delta x}{\Delta t}
$$

$$
\text { units } \frac{m}{\text { seconds }}
$$

https://voyager.jpl.nasa.gov/mission/status/

- Voyager 1 is currently 150 A.U. from the Sun (Earth is 1 A.U., Pluto is 40 A.U.)
- It is drifting away at a constant velocity in a straight line of 15 km / s through interstellar space.

Poll Question

- If the Position versus Time graph of an object moving in 1D is a straight line, what does this mean?
A. The object is not moving
B. The object is moving with a constant velocity
C. The object is moving with a constant acceleration
- If the Position versus Time graph of an object moving in 1D is a straight line, what does this mean?
A. might be true, if the straight
A. The object is not moving line is also horizontal.

B. The object is moving with a constant velocity
 B. is the Best Answer

C. The object is moving with a constant acceleration $\quad \begin{aligned} & \text { C. is technically also true, since the } \\ & \text { acceleration is zero (which is constant!) }\end{aligned}$

Curved Line $=$ Not-Constant Velocity

$$
\begin{aligned}
& \qquad v=\frac{d x}{d t} \\
& \uparrow \\
& \text { instantanpous } \\
& \text { velocity. "velocity" } \\
& \text { a.k.a. }
\end{aligned}
$$

$v=$ slope of tangent to tho curve.
v is the time-derivative of position

Poll Question

- When do objects A and B have the same velocity?
A. $t=0 \mathrm{~s}$
B. $t=1 \mathrm{~s}$
C. $t=3 \mathrm{~s}$
D. $t=5 \mathrm{~s}$
E. Objects A and B never have the same velocity

Poll Question

- When do objects A and B have the same velocity?
A. $t=0 \mathrm{~s}$
B. $t=1 \mathrm{~s}$
C. $t=3 \mathrm{~s}$
D. $t=5 \mathrm{~s}$
E. Objects A and B never have the same velocity

Acceleration in 1-D (along a line)

- Velocity is the time-derivative of position. $\frac{m}{s}$
- Acceleration is the time-derivative of velocity.
- S.I. unit of acceleration is m / s per second, $\frac{m}{s \cdot s}=\frac{m}{\mathrm{~s}^{2}}$
also called $\mathrm{m} / \mathrm{s}^{2}$.
- Acceleration is like the "speed of the speed"
- Acceleration is "how fast fast changes!"
- It is possible to be momentarily stopped ($v=0$) with a non-zero acceleration!

Today's Office Hour + Help Centre

- I will turn off the recording in 1 minute (after the next slide)
- I will linger in this zoom webinar for the next 20 minutes, dealing with Q\&A.
- Feel free to raise your hand and I will unmute the raised hand at the top of my list
- At 12:20 I will shift over to gather.town for 10 minutes, at which point a TA from this course will be there for a PHY131 Help Centre from 12:30-1:30 today.

Before Class 4 on Friday

1. Think of an example of an object with a negative acceleration which is speeding up.
2. Think of an example of an object with a positive acceleration which is slowing down.
3. Think of an example of an object with zero velocity which is accelerating!
