PHY131 F Fall 2020

Class 5

Today:

- Chapter 2 Kinematics: Motion in One Dimension
- Problem Solving Examples relevant to the Synchronous Midterm Assessment

Some people in a hotel are dropping water balloons from their open window onto the ground below. The balloons take 0.15 s to pass your $1.6-\mathrm{m}$-tall window. Where should security look for the raucous hotel guests?
SKETCH \& TRANSLATE.
REPRESENT MATHEMATICALLY

Poll

Here is a motion diagram of a car moving along a straight road. Which velocity-versus-time graph matches this motion diagram?

C.
D.

E.

3

Here is the velocity graph of an object that is at the origin ($x=0 \mathrm{~m}$)
REPRESENT MATHEMATICALLY
at $t=0 \mathrm{~s}$. At $\mathrm{t}=4.0 \mathrm{~s}$, the object's position is

SKETCH \& TRANSLATE.

A graph of velocity versus time for a hockey puck shot into a goal appears as follows:

Which of the following position graphs matches the velocity graph?

B.
C.

D.

5

Shannon drives at a constant speed on the highway. She measures

> REPRESENT MATHEMATICALLY the time between passing successive km markers separated by exactly $1.000 \times 10^{3} \mathrm{~m}$. If she measures a time of 48 seconds, what is her speed?

SKETCH \& TRANSLATE.

Poll

A Toyota Camry can accelerate from rest to $100 \mathrm{~km} / \mathrm{h}$ in 6.5 s .
A Porsche 918 Spyder can accelerate from rest to $100 \mathrm{~km} / \mathrm{h}$ in 2.6 s .
During the test, which car would drive the longer distance?

A The Camry

B The Porsche

They would both travel the same distance

7

Shannon drives at a constant speed on the highway. She measures REPRESENT MATHEMATICALLY the time between passing successive km markers separated by exactly $1.000 \times 10^{3} \mathrm{~m}$. If she measures a time of 48 seconds, what is her speed?

> SKETCH \& TRANSLATE.

9

A speed skater moving across frictionless ice at $8.0 \mathrm{~m} / \mathrm{s}$ hits a $5.0-$ m wide patch of rough ice. She slows steadily, then continues on at $6.0 \mathrm{~m} / \mathrm{s}$. What is the magnitude of her acceleration on the rough ice? (Assume acceleration is constant on the rough patch.)

SKETCH \& TRANSLATE.

SIMPLIFY \& DIAGRAM

In an 8.00 km race, one runner runs at a steady $11.0 \mathrm{~km} / \mathrm{h}$, and another runs at $14.0 \mathrm{~km} / \mathrm{h}$. How far from the finish line is the slower runner when the faster runner finishes the race?

SKETCH \& TRANSLATE.

SIMPLIFY \& DIAGRAM
\qquad

Poll

Heather and Jerry are standing on a bridge 50 m above a river. Heather throws a rock straight down with a speed of $20 \mathrm{~m} / \mathrm{s}$. Jerry, at exactly the same instant of time, throws a rock straight up with the same speed. Which rock has the faster speed as it hits the water? [Neglect air resistance.]

A The rock Heather threw.

B The rock Jerry threw.
C Both rocks will have the same speed as they hit the water.

Before Class 6 on Wednesday

- Read the first 3 sections of chapter 3:
- 3.1 Force
- 3.2 Representing Forces with Vectors
- 3.3 How is Force Related to Motion?

