PHY131 F Fall 2020

Class 8 PHY131H1 F LEC0101 > Quizzes > Midterm Assessment 1

Midterm Assessment 1

Today:

Question 1
10 pts

- Finishing Chapter 3
- Review and Practice Problems
- Tomorrow: Midterm Assessment \#1:
- 30 minutes
- 10 multiple choice questions on Chapters 1, 2 and 3.
- the whole class does the quiz synchronously in real-time!

Here is a motion diagram of a car moving along a

Available from Until
Sep 29 at 8:10pm Sep 29 at 8:45pm
Time Running: Hide
29 Minutes, 27 Seconds

Last day at the end of class I asked:

- "After having been thrown upward, a $100-\mathrm{g}$ apple falls back into your hand and you catch it. L While you are catching it, the force that you exert on the apple is
A. more than
B. less than
C. the same as

- the force that you exert on the apple when you are holding it at rest."
$t y=u p$

$\vec{a}=\frac{\sum F}{m_{a}}=0$
$\sum F=0=F_{\text {Moan }}-M_{a g}$
$F_{\text {Moan }}-m_{a g}$

Example
Three blocks are being accelerated upward at 3.2 $\mathrm{m} / \mathrm{s}^{2}$ by a force $\overrightarrow{\mathrm{F}}$ applied to the bottom block as shown in the diagram. The mass of the bottom block is 7.0 kg , the mass of the middle block is 14 kg , and that of the top block is 21 kg . SKETCH \& TRANS
(a) Find the magnitude of F.
\qquad

$$
m_{\text {sys }}=7+14+21=42 \mathrm{~kg} .=m_{s}
$$ Need F.

Texternal ford on system.

REP. MATH Newton's 2nd Law

$$
a_{y}=\frac{\Sigma F_{y}}{m_{s}}=\frac{F-m_{s} g}{m_{s}}
$$

Solve for $F \quad m_{s} a_{y}=F-m_{s} g$

$$
F=m_{s} a_{y}+m_{s} g=m_{s}\left(a_{y}+g\right)
$$

SOLVE\& OVAL $F=42(3.2+9.8)$

Example
Three blocks are being accelerated upward at 3.2 $\mathrm{m} / \mathrm{s}^{2}$ by a force $\overrightarrow{\mathrm{F}}$ applied to the bottom block as shown in the diagram. The mass of the bottom block is 7.0 kg , the mass of the middle block is 14 kg , and that of the top block is 21 kg .
(b) What is the magnitude of the normal force that the top block exerts on the middle block?

By Newton's Ord Law:

$$
\left|F_{1 \text { on 2 }}\right|=\left|F_{2011}\right|
$$

Since there is only ore pushing force on 1, it's easiest to consider it as

Set "system" = block 1,

$$
m_{1}=21 \mathrm{~kg}
$$

SIMP \& DIAG

$$
\begin{aligned}
& \uparrow F_{\text {Ion }} \\
& \downarrow F_{\text {goa }}=m, g
\end{aligned}
$$

REP. MATH Newton's and Law:

$$
a_{y}=\frac{\sum F_{y}}{m_{1}}=\frac{F_{20 n 1}-m_{1 g}}{m_{1}}
$$

Solve for $F_{2011:} m_{1} a_{y}=F_{20-1}-m_{19}$

$$
\begin{aligned}
&\left|F_{10 n 2}\right|=\left|F_{20 \cap 1}\right|=m_{1}\left(a_{y}+g\right) \\
& \text { SOLVE\&EVAL }=21(9.8+3.2) \\
&\left|F_{1 \times n 2}\right|=273 \mathrm{~N}
\end{aligned}
$$

Demonstration

- Have you ever seen a professor gain 30 pounds before your very eyes?

Self-adjusting forces

- The force of gravity, $F_{g}=m g$, has an equation for it which gives the correct magnitude. But not all kinds of force have handy equations like these.
- Normal force and Tension are self-adjusting forces: there are no equations for these!!
- Normal force is whatever is needed to keep the object from crashing through the surface.
- Tension is whatever is needed to keep the string or rope from breaking.
- In these cases, you must draw a free-body diagram and figure out by using equilibrium and Newton's $2^{\text {nd }}$ law what the needed force is.

Poll Question
Bob stands under a low concrete arch, and presses upwards on it with a force of 100 N . Bob's mass is 82 kg . He is in equilibrium. What is the total normal force of the ground on Bob? (Note that $82 \times 9.8=800$.)

Poll Question
Bob stands under a low concrete arch, and presses upwards on it with a force of 100 N . Bob's mass is 82 kg . He is in equilibrium. What is the total normal force of the ground on Bob? (Note that $82 \times 9.8=800$.)

Fictitious Forces and Airbags

- If you are riding in a car that makes a sudden stop, you may feel as if a force "throws" you forward toward the windshield.
- There really is no such force!

- Some books (not Etkina) describe the experience in terms of what are called fictitious forces.
- These are not real, but they help describe motion in a noninertial reference frame.
- Etkina avoids fictitious forces by doing all the calculations in inertial frames (better).
- In this case, the external force on the passenger is backward.

- Using the inertial reference frame of the Earth, this is how we draw the force diagram in this course.
- Note there are no forward forces on the passenger.
- The airbag will push backward on the passenger.

- Define "system" = passenger (also the driver in this case)
- Speed is decreasing
- Acceleration is in opposite direction of velocity.

A $6.00-\mathrm{kg}$ block is in contact with a $4.00-\mathrm{kg}$ block on a horizontal frictionless surface as shown in the figure. The $6.00-\mathrm{kg}$ block is being pushed by a horizontal $20.0-\mathrm{N}$ force as shown. What is the magnitude of the force that the $4.00-\mathrm{kg}$ block exerts on the $6.00-\mathrm{kg}$ block?
A. 4.00 N
B. 6.00 N
C. 8.00 D
D. 10.0 N
E. 20.0 N

REPRESENT MATHEMATICALLY

SKETCH \& TRANSLATE. $\quad \vec{F}=+20 \mathrm{~N} \quad m_{1}=6 \mathrm{~kg}$
Need $\left|F_{20-1}\right| \quad m_{2}=4$ ko
By Newton's 3rd Law $\left|F_{2 \text { on i }}\right|=\left|F_{10.2}\right|$
SIMPLIFY \& DIAGRAM
Strategy: Use system $=6$ th, solve Then for day. $\begin{gathered}\text { use sys. }=m_{2} \text {, solve for } \\ |F| \text { on z }\end{gathered}$

$$
\sum F_{x}=m_{2} a_{x}=F_{20,0}=m_{2}\left(\frac{F}{n} n_{1}+a_{n}\right)
$$

$$
F_{\text {and }}=4\left(\frac{20}{4+6}\right)=8 \mathrm{~N}
$$

Two masses, m_{1} and m_{2}, are joined by a string. An upward pulling force of magnitude F is applied directly to m_{1}. As a result, both blocks accelerate upward with acceleration magnitude a. While accelerating, the tension in the string has a magnitude of T. If $F=$ $36 \mathrm{~N} a=2.2 \mathrm{~m} / \mathrm{s}^{2}$, and $T=24 \mathrm{~N}$, what mass of m_{1} ?
A. 1.0 kg
B. 1.5 kg
C. 2.0 kg
D. 2.5 kg
E. 3.0 kg

SIMPLIFY \& DIAGRAM
Force diagram of m_{1}

REPRESENT MATHEMATICALLY
Newton's Rna Law;

$$
a_{y}=\frac{\sum F_{y}}{m_{1}}=\frac{F-T-m_{1} g}{m_{1}}
$$

Solve for m_{1}

$$
\begin{gathered}
m_{1} a_{y}=F-T-m, g \\
m_{1} a_{y}+m_{1} g=F-T \\
m_{1}\left(a_{y}+g\right)=F-T
\end{gathered}
$$

SOLVE \& EVALUATE

$$
\begin{aligned}
& m_{1}=\frac{F-T}{a_{y}+g}=\frac{36-24}{2.2+9.8} \\
& m_{1}=1 \quad 2 \text { sig. digs. } \\
& m_{1}=1.0 \mathrm{~kg}
\end{aligned}
$$

Midterms in Non-Global Pandemic Times

- Midterm Assessments in this course are normally done in person, on paper.
- We book huge rooms in the Exam Centre at 255 McCaul St. It's quiet for 2 hours.
- Calculators and one aid-sheet are allowed.
- Phones and backpacks must be stored at the edges of the room.
- Many invigilators circulate in the room.

- Every student must show photo-ID to an invigilator and sign a signature sheet.

This pandemic rages on...

New reported deaths by day across the world

Physical distancing is helping to slow the local spread of COVID-19.
By avoiding gatherings, wearing masks, and reducing non-essential travel and trips out of our homes we are helping.
The pandemic would be far worse if we did not do this.

Fall 2020 (during COVID-19 pandemic) Midterm Assessment \#1

- Each online half-hour assessement is worth between 10% and 12.5% of your mark in this course.
- The lowest of five assessment scores will be dropped.
- The assessment will become available on Quercus to start at $8: 10 \mathrm{pm}$ tomorrow evening, Toronto time (ie 32 hours from right now)
- If you are registered for the alternate sitting, then you do the whole thing exactly 2 hours later.
- If you miss the assessment, you get a zero.

Fall 2020 (during COVID-19 pandemic)

 Midterm Assessment \#1- The assessment is "open book"; allowed aids include the course notes, videos, and google-searches for static webpages.
- You must work on the assessment individually.
- No group work or chats with other students are allowed during the assessment.

Fall 2020 (during COVID-19 pandemic) Midterm Assessment \#1

- Once you start there will be a 30 -minute timer
- The assessment ends when your personal 30-minute timer elapses, or $8: 45 \mathrm{pm}$, whichever comes first.
- You will see one question at a time, in a random order.
- You must submit each answer by clicking Next in order to see the next question; you will not have the ability to go back change any answer after it has been submitted.
- After completing all 10 questions you must click Submit Quiz before the time has ended.

Fall 2020 (during COVID-19 pandemic)
Midterm Assessment \#1

- There are 3 conceptual questions and 7 numerical questions.
- You will need a calculator, or Excel or something to do these. You should have pencil and paper ready for rough work.
- All questions are Multiple Choice, marked automatically.
- The average time per question is 3 minutes, but numerical questions will likely take longer than conceptual, so do not linger long on the conceptual questions.
- Material will cover mostly questions and problems from Chapters 2 and 3 from Etkina. Chapter 1 is also important, but not heavily emphasized in this assessment.

Before Class 9 on Wednesday

- On Wednesday we go into:

- Please read:
- 4.1 Two-Dimensional Vectors, Force Vector Components
- 4.2 Newton's Second Law in 2D
- Something to think about:
- "If you are driving at a constant speed around a large, circular track, are you accelerating?"

