

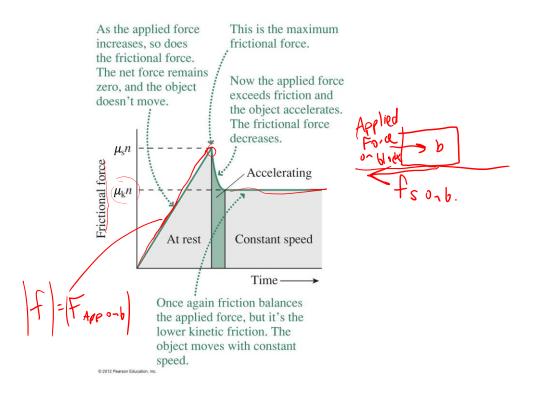
PHY131 F Fall 2020 Class 11

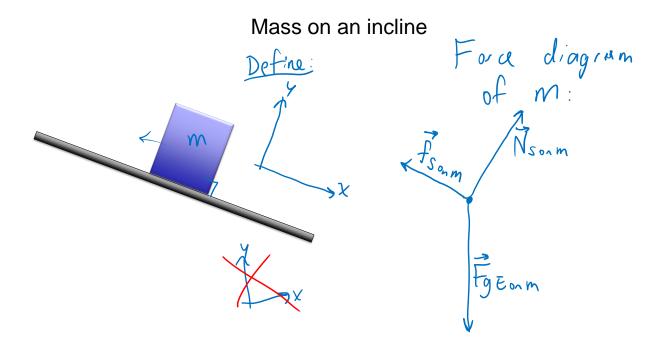
Today:

- 4.4 Solving Dynamics Problems in 2D
- 4.5 Projectile Motion

Poll

Have you tried the Module 2 Ch.4 Pre-Quiz yet? (It is due at 8:45pm tonight – about 9 hours from now.)


- A. No, not yet
- B. Yes, it went fine
- C. Yes, but I had physics-related trouble
- D. Yes, but I had technical trouble uploading my images


1

Midterm Assessment 2

- On Tuesday Oct. 13, 8:10-8:40pm Toronto Time, you will need to upload two solutions into a quiz very similar to the Ch.4 Practice Quiz.
- In case of weird Quercus-related glitchiness, I have set up a Google Drive folder:
- PHY131 Midterm Assessment 2 Last Resort Folder
- <u>https://drive.google.com/drive/folders/1htRavsflpfVFVvm8b_QUq</u> <u>mTVfiohThHz?usp=sharing</u>
- This link will be available in the instructions in case Quercus is really not allowing your upload. The Google drive will time-stamp your upload, so we can know you did it in time.

3

4.4 Skills for Analyzing Processes Involving Forces in Two Dimensions

- Sketch and translate
 - Make a sketch of the process.
 - Choose a system.
 - Choose coordinate axes with one axis in the direction of acceleration and the other axis perpendicular to that direction.
 - Indicate in the sketch everything you know about the process relative to these axes.
 - Identify the unknown quantity of interest.

5

4.4 Skills for Analyzing Processes Involving Forces in Two Dimensions

Simplify and diagram

- Simplify the process. For example, can you model the system as a point-like object? Can you ignore friction?
- Represent the process diagrammatically with a motion diagram (Ch.2) or a force diagram (Ch.3 or 4).
- Check for consistency of the diagrams—is the sum of the forces in the direction of the acceleration?

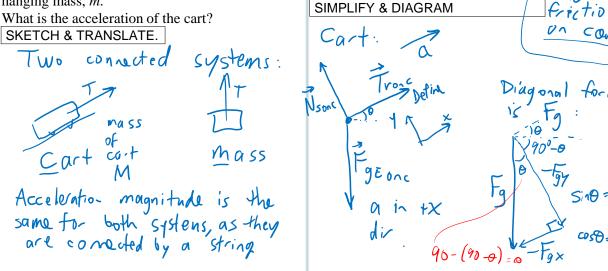
7

4.4 Skills for Analyzing Processes Involving Forces in Two Dimensions

Represent mathematically

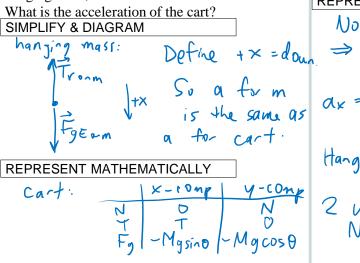
 Convert these qualitative representations into quantitative mathematical descriptions of the process using Newton's second law and kinematics equations.

4.4 Skills for Analyzing Processes Involving Forces in Two Dimensions


Solve and evaluate

- Substitute the given values into the mathematical expressions and solve for the unknowns.
- Decide whether the assumptions that you made were reasonable.
- Finally, evaluate your work to see if it is reasonable (check units, limiting cases, and whether the answer has a reasonable magnitude).
- Make sure the answer is consistent with other representations.

9


A cart of mass M is on a track which is at an angle of θ above the horizontal.

The cart is attached to a string which goes over a pulley; the other end of the string is attached to a hanging mass, m.

A cart of mass M is on a track which is at an angle of θ above the horizontal.

The cart is attached to a string which goes over a pulley; the other end of the string is attached to a hanging mass, m.

$$\frac{M}{REPRESENT MATHEMATICALLY}$$

$$\frac{M}{NO} = \frac{1}{4} = \frac{1}{2} =$$

11

A cart of mass M is on a track which is at an angle of θ above the horizontal.

The cart is attached to a string which goes over a pulley; the other end of the string is attached to a hanging mass, *m*.

What is the acceleration of the cart? SOLVE & EVALUATE

Use (1) to solve for T:

$$a = \frac{T - Mg \sin \theta}{M}$$

$$Ma = T - Mg \sin \theta$$

$$T = M(a + g \sin \theta) \in plug$$
into (2)

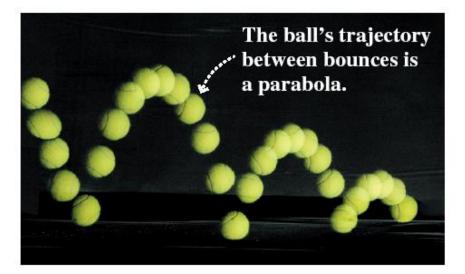
$$a = mg - M(a + g \sin \theta)$$

$$a = g - Ma - Mg \sin \theta$$

$$a + Ma = g[1 - Msin \theta]$$

$$a \left(1 + M\right) = \frac{1}{m}$$

$$a = g \left[\frac{m - Msin \theta}{m + M}\right]$$

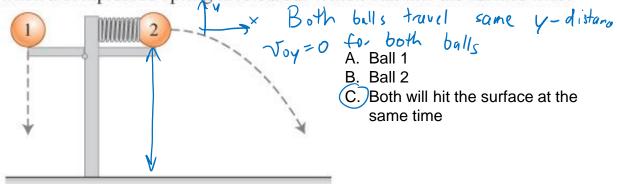

$$Limits: if M > m, a = -g \sin \theta$$

$$if g = 0, a = g \left(\frac{m}{m + m}\right)$$

$$if als m > M, a = +g$$

Projectile Motion

The parabolic trajectory of a bouncing ball.

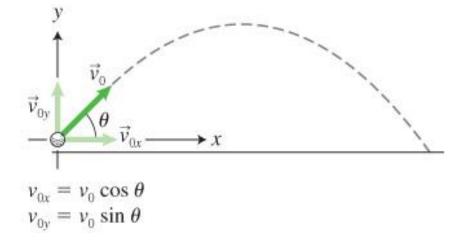


13

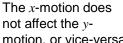
Poll

4.5 Projectile Motion

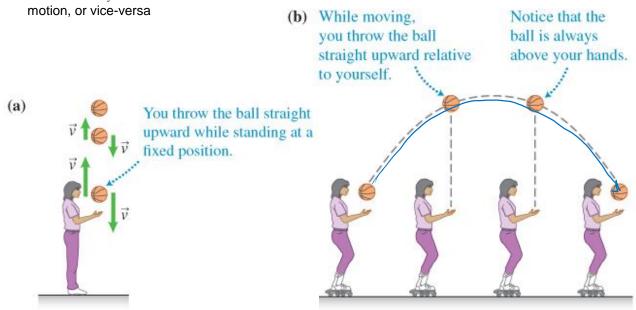
At time zero, ball 1 is dropped. Simultaneously, ball 2 is shot horizontally when a compressed spring is released. Which ball hits the surface first?

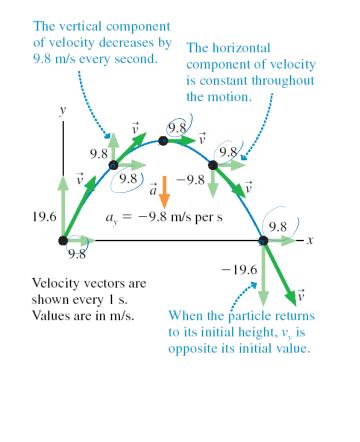


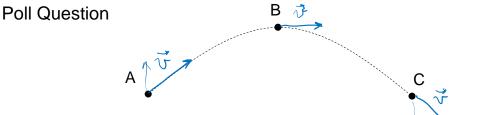
Projectile Motion


Projectile motion is made up of two **independent** motions:

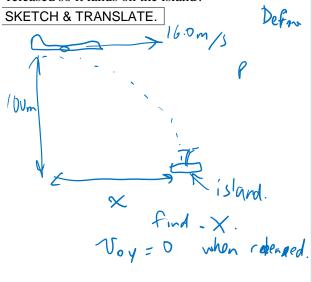
 \times • uniform motion at constant velocity in the horizontal direction and

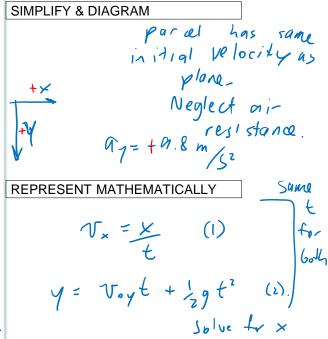

 $\mathbf{v} \bullet$ free-fall motion in the vertical direction.




15

4.5 Projectile Motion


- A tennis ball is launched at an angle, and flies through the air in a parabolic path, as shown, A→ B → C.
- At point B:
- A. the velocity is horizontal, and the speed is maximum.
- B) the velocity is horizontal, and the speed is minimum.
- C. the velocity is horizontal, but the speed is neither a maximum nor a minimum.
- D. the velocity is not horizontal, but the speed is minimum.
- E. the velocity is not horizontal, and the speed is neither a maximum or minimum.


4.5 Projectile Motion

Projectile motion in the <i>x</i> -direction		Projectile motion in the y-direction	
$(a_x = 0)$ $(v_x = v_{0x} = v_0 \cos \theta$ $x = x_0 + v_{0x}t$	(4.7 <i>x</i>)	$(a_y = -g)$ $v_y = v_{0y} + a_y t = v_0 \sin \theta + (-g)t$ $y = y_0 + v_{0y} t + \frac{1}{2}a_y t^2$	(4.7 <i>y</i>)
$= x_0 + (v_0 \cos \theta)t$	(4.8 <i>x</i>)	$= y_0 + (v_0 \sin \theta)t - \frac{1}{2}gt^2$	(4.8y)
	۲) ۲)	Vo)θ → ×	

19

Problem 4.60. An airplane is delivering food to a small island. It flies 100 m above the ground at a speed of 160 m/s. Where should the parcel be released so it lands on the island?

Problem 4.60. An airplane is delivering food to a small island. It flies 100 m above the ground at a speed of 160 m/s. Where should the parcel be released so it lands on the island?

SOLVE & EVALUATE $x = v_{x} t \quad Need t$ $(2) \quad y = \frac{1}{2}g t^{2}$ $\frac{2y}{g} = t^{2} \quad t = \frac{2y}{g}$ $x = v_{x} \quad z_{y} = 160 \quad z_{100}$ $g = 160 \quad z_{100}$

21

Before Class 12 on Wednesday

- Please finish reading Ch.4
- We will be discussing rolling without slipping, and taking up problems in Chapter 4 to prepare you for the Oct.13 Midterm Assessment
- On Friday we will be starting Chapter 5, even though Chapter 5 material will **not** be on the Oct. 13 Midterm Assessment
- Also on Friday we will be doing a group quiz during class. You should be able to work with your Practicals Partners in Microsoft Teams *during* the Class. Most recent Facilitator must start the call in your Pod-chat during lecture.
- Monday Oct.12 there is no class, due to Thanksgiving