

PHY131 F Fall 2020
Class 11

Today:

- 4.4 Solving Dynamics Problems in 2D - 4.5 Projectile Motion

4.4 Skills for Analyzing Processes Involving Forces in Two Dimensions

- Sketch and translate
- Make a sketch of the process.
- Choose a system.
- Choose coordinate axes with one axis in the direction of acceleration and the other axis perpendicular to that direction.
- Indicate in the sketch everything you know about the process relative to these axes.
- Identify the unknown quantity of interest.

4.4 Skills for Analyzing Processes Involving Forces in Two Dimensions

- Simplify and diagram
- Simplify the process. For example, can you model the system as a point-like object? Can you ignore friction?
- Represent the process diagrammatically with a motion diagram and a force diagram.
- Check for consistency of the diagrams-is the sum of the forces in the direction of the acceleration?

4.4 Skills for Analyzing Processes Involving Forces in Two Dimensions

- Represent mathematically
- Convert these qualitative representations into quantitative mathematical descriptions of the process using Newton's second law and kinematics equations.

4.4 Skills for Analyzing Processes Involving Forces in Two Dimensions

- Solve and evaluate
- Substitute the given values into the mathematical expressions and solve for the unknowns.
- Decide whether the assumptions that you made were reasonable.
- Finally, evaluate your work to see if it is reasonable (check units, limiting cases, and whether the answer has a reasonable magnitude).
- Make sure the answer is consistent with other representations.

A cart of mass M is on a track which is at an angle of θ above the horizontal.
The cart is attached to a string which goes over a pulley; the other end of the string is attached to a hanging mass, m.
What is the acceleration of the cart?
SKETCH \& TRANSLATE.

7

A cart of mass M is on a track which is at an angle of θ above the horizontal.
The cart is attached to a string which goes over a pulley; the other end of the string is attached to a hanging mass, m.
What is the acceleration of the cart?

REPRESENT MATHEMATICALLY

A cart of mass M is on a track which is at an angle of θ above the horizontal.
The cart is attached to a string which goes over a pulley; the other end of the string is attached to a hanging mass, m.
What is the acceleration of the cart?
SOLVE \& EVALUATE

Proiectile Motion

The parabolic trajectory of a bouncing ball.

Poll 4.5 Projectile Motion

At time zero, ball 1 is dropped. Simultaneously, ball 2 is shot horizontally when a compressed spring is released. Which ball hits the surface first?

A. Ball 1
B. Ball 2
C. Both will hit the surface at the same time

Projectile Motion

Projectile motion is made up of two independent motions:

- uniform motion at constant velocity in the horizontal direction and
- free-fall motion in the vertical direction.

$$
\begin{aligned}
& v_{0 x}=v_{0} \cos \theta \\
& v_{0 y}=v_{0} \sin \theta
\end{aligned}
$$

The x-motion does not affect the y motion, or vice-versa

4.5 Projectile Motion

(b) While moving, you throw the ball straight upward relative to yourself.
(a)

You throw the ball straight upward while standing at a fixed position.

- A tennis ball is launched at an angle, and flies through the air in a parabolic path, as shown, $A \rightarrow B \rightarrow C$.
- At point B:
A. the velocity is horizontal, and the speed is maximum.
B. the velocity is horizontal, and the speed is minimum.
C. the velocity is horizontal, but the speed is neither a maximum nor a minimum.
D. the velocity is not horizontal, but the speed is minimum.
E. the velocity is not horizontal, and the speed is neither a maximum or minimum.

4.5 Projectile Motion

Projectile motion in the x-direction

$$
\left.\begin{array}{rlrl}
& \left(a_{x}=0\right) & & \left(a_{y}=-g\right) \\
v_{x}= & v_{0 x}=v_{0} \cos \theta & (4.7 x) & v_{y}
\end{array}=v_{0 y}+a_{y} t=v_{0} \sin \theta+(-g) t\right)
$$

Projectile motion in the y-direction

Problem 4.60. An airplane is delivering food to a small island. It flies 100 m above the ground at a speed of $160 \mathrm{~m} / \mathrm{s}$. Where should the parcel be released so it lands on the island?

SKETCH \& TRANSLATE.

17

Problem 4.60. An airplane is delivering food to a small island. It flies 100 m above the ground at a speed of $160 \mathrm{~m} / \mathrm{s}$. Where should the parcel be released so it lands on the island?
SOLVE \& EVALUATE

Before Class 12 on Wednesday

- Please finish reading Ch. 4
- We will be discussing rolling without slipping, and taking up problems in Chapter 4 to prepare you for the Oct. 13 Midterm Assessment
- On Friday we will be starting Chapter 5 , even though Chapter 5 material will not be on the Oct. 13 Midterm Assessment
- Also on Friday we will be doing a group quiz during class. You should be able to work with your Practicals Partners in Microsoft Teams during the Class.
- Monday Oct. 12 there is no class, due to Thanksgiving

